An extended Kuhn–Tucker approach for linear bilevel programming

Kuhn–Tucker approach has been applied with remarkable success in linear bilevel programming (BLP). However, it still has some extent unsatisfactory and incomplete. One principle challenges is that it could not well handle a linear BLP problem when the constraint functions at the upper-level are of a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 162; číslo 1; s. 51 - 63
Hlavní autoři: Shi, Chenggen, Lu, Jie, Zhang, Guangquan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 04.03.2005
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Kuhn–Tucker approach has been applied with remarkable success in linear bilevel programming (BLP). However, it still has some extent unsatisfactory and incomplete. One principle challenges is that it could not well handle a linear BLP problem when the constraint functions at the upper-level are of arbitrary linear form. This paper describes theoretical foundation of Kuhn–Tucker approach and proposes an extended Kuhn–Tucker approach to deal with the problem. The results have demonstrated that the extended Kuhn–Tucker approach can solve a wider class of linear BLP problems can than current capabilities permit.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2003.12.089