An extended Kuhn–Tucker approach for linear bilevel programming

Kuhn–Tucker approach has been applied with remarkable success in linear bilevel programming (BLP). However, it still has some extent unsatisfactory and incomplete. One principle challenges is that it could not well handle a linear BLP problem when the constraint functions at the upper-level are of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 162; H. 1; S. 51 - 63
Hauptverfasser: Shi, Chenggen, Lu, Jie, Zhang, Guangquan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY Elsevier Inc 04.03.2005
Elsevier
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kuhn–Tucker approach has been applied with remarkable success in linear bilevel programming (BLP). However, it still has some extent unsatisfactory and incomplete. One principle challenges is that it could not well handle a linear BLP problem when the constraint functions at the upper-level are of arbitrary linear form. This paper describes theoretical foundation of Kuhn–Tucker approach and proposes an extended Kuhn–Tucker approach to deal with the problem. The results have demonstrated that the extended Kuhn–Tucker approach can solve a wider class of linear BLP problems can than current capabilities permit.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2003.12.089