An extended Kuhn–Tucker approach for linear bilevel programming

Kuhn–Tucker approach has been applied with remarkable success in linear bilevel programming (BLP). However, it still has some extent unsatisfactory and incomplete. One principle challenges is that it could not well handle a linear BLP problem when the constraint functions at the upper-level are of a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics and computation Ročník 162; číslo 1; s. 51 - 63
Hlavní autori: Shi, Chenggen, Lu, Jie, Zhang, Guangquan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY Elsevier Inc 04.03.2005
Elsevier
Predmet:
ISSN:0096-3003, 1873-5649
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Kuhn–Tucker approach has been applied with remarkable success in linear bilevel programming (BLP). However, it still has some extent unsatisfactory and incomplete. One principle challenges is that it could not well handle a linear BLP problem when the constraint functions at the upper-level are of arbitrary linear form. This paper describes theoretical foundation of Kuhn–Tucker approach and proposes an extended Kuhn–Tucker approach to deal with the problem. The results have demonstrated that the extended Kuhn–Tucker approach can solve a wider class of linear BLP problems can than current capabilities permit.
AbstractList Kuhn–Tucker approach has been applied with remarkable success in linear bilevel programming (BLP). However, it still has some extent unsatisfactory and incomplete. One principle challenges is that it could not well handle a linear BLP problem when the constraint functions at the upper-level are of arbitrary linear form. This paper describes theoretical foundation of Kuhn–Tucker approach and proposes an extended Kuhn–Tucker approach to deal with the problem. The results have demonstrated that the extended Kuhn–Tucker approach can solve a wider class of linear BLP problems can than current capabilities permit.
Author Shi, Chenggen
Lu, Jie
Zhang, Guangquan
Author_xml – sequence: 1
  givenname: Chenggen
  surname: Shi
  fullname: Shi, Chenggen
  email: cshi@it.uts.edu.au
– sequence: 2
  givenname: Jie
  surname: Lu
  fullname: Lu, Jie
  email: jielu@it.uts.edu.au
– sequence: 3
  givenname: Guangquan
  surname: Zhang
  fullname: Zhang, Guangquan
  email: zhangg@it.uts.edu.au
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16530287$$DView record in Pascal Francis
BookMark eNp9kL1OwzAUhS0EEm3hAdiyMCb4J40dMVUVf6ISS5kt5-amdUmcyE4r2HgH3pAnIVWRkBg63eGc70rnG5NT1zok5IrRhFGW3WwS00DCKRUJ4wlV-QkZMSVFPM3S_JSMKM2zWAzxORmHsKGUyoylIzKbuQjfe3QlltHzdu2-P7-WW3hDH5mu862BdVS1PqqtQ-Ojwta4wzoakpU3TWPd6oKcVaYOePl7J-T1_m45f4wXLw9P89kiBsFlH0teVShEiQI4gASWFSrjILnguUi5EEWpCgAlU8UrUTBApLLgBZsqJQ1HMSHXh7-dCWDqyhsHNujO28b4D82yqaB8WDwh7NAD34bgsfqrUL13pTd6cKX3rjTjenA1MPIfA7Y3vW1d742tj5K3BxKH6TuLXgew6ABL6xF6Xbb2CP0DoCqGhA
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1089_omi_2010_0070
crossref_primary_10_1007_s11044_024_09969_1
crossref_primary_10_1016_j_swevo_2018_06_004
crossref_primary_10_1007_s00170_023_11102_z
crossref_primary_10_1109_TCAD_2024_3467220
crossref_primary_10_1007_s12046_020_01486_z
crossref_primary_10_1016_j_eswa_2007_09_011
crossref_primary_10_1109_TEVC_2017_2712906
crossref_primary_10_1016_j_amc_2004_06_047
crossref_primary_10_1049_ein2_12004
crossref_primary_10_1108_17410390710725760
crossref_primary_10_1109_TSTE_2021_3084211
crossref_primary_10_1016_j_amc_2005_12_039
crossref_primary_10_1016_j_jclepro_2018_12_236
crossref_primary_10_1016_j_amc_2015_06_025
crossref_primary_10_1007_s10994_023_06329_6
crossref_primary_10_1109_TII_2018_2867878
crossref_primary_10_1111_coin_12008
crossref_primary_10_1051_e3sconf_202125303005
crossref_primary_10_2166_ws_2018_165
crossref_primary_10_1016_j_knosys_2018_05_022
crossref_primary_10_1016_j_amc_2005_11_134
crossref_primary_10_1016_j_eswa_2012_01_185
crossref_primary_10_1016_j_tre_2018_04_014
crossref_primary_10_1142_S021759591750035X
crossref_primary_10_4018_ijsds_2013100104
crossref_primary_10_1142_S021759591250011X
crossref_primary_10_3390_su9020251
crossref_primary_10_1080_0305215X_2021_1895991
crossref_primary_10_1016_j_amc_2006_01_043
crossref_primary_10_1016_j_knosys_2007_01_003
crossref_primary_10_1007_s12665_016_5483_y
crossref_primary_10_1016_j_amc_2011_01_066
crossref_primary_10_1016_j_ins_2016_08_022
crossref_primary_10_1177_02783649251353181
crossref_primary_10_1080_01605682_2019_1590132
crossref_primary_10_1007_s10489_020_02003_9
crossref_primary_10_1016_j_ecolind_2023_110334
crossref_primary_10_3233_JIFS_169213
crossref_primary_10_1137_23M1566753
crossref_primary_10_1007_s10898_004_7739_4
crossref_primary_10_1109_TRO_2024_3386390
crossref_primary_10_1109_TPWRS_2008_922573
crossref_primary_10_1007_s12597_009_0011_4
crossref_primary_10_1016_j_jenvman_2015_06_036
crossref_primary_10_1287_opre_2017_1589
crossref_primary_10_1016_j_amc_2007_05_004
crossref_primary_10_1109_TCYB_2024_3492075
crossref_primary_10_1016_j_omega_2016_09_008
crossref_primary_10_1016_j_endm_2010_05_075
crossref_primary_10_1007_s11276_016_1360_6
crossref_primary_10_1007_s13042_012_0145_1
crossref_primary_10_1049_iet_gtd_2015_1344
crossref_primary_10_1016_j_cie_2016_11_004
crossref_primary_10_1016_j_amc_2006_11_176
Cites_doi 10.1137/0913069
10.1016/j.amc.2003.10.031
10.1109/TSMC.1981.4308712
10.1016/0305-0548(82)90006-5
10.1016/0305-0548(82)90007-7
10.1287/mnsc.30.8.1004
10.1007/BF01096412
ContentType Journal Article
Copyright 2004 Elsevier Inc.
2005 INIST-CNRS
Copyright_xml – notice: 2004 Elsevier Inc.
– notice: 2005 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.amc.2003.12.089
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 63
ExternalDocumentID 16530287
10_1016_j_amc_2003_12_089
S0096300304000554
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-72ffe33de3c2cc7c16b862c7232934233bd8bcc87482f3b1cee07b2b15887a2e3
ISICitedReferencesCount 126
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000226859900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Mon Jul 21 09:13:35 EDT 2025
Sat Nov 29 02:46:04 EST 2025
Tue Nov 18 21:22:31 EST 2025
Fri Feb 23 02:29:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Kuhn–Tucker conditions
Decision-making
Linear bilevel programming
Optimization
Von Stackelberg game
Numerical analysis
Applied mathematics
Decision making
Optimization method
Linear programming
Kuhn-Tucker conditions
Constrained optimization
Mathematical programming
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-72ffe33de3c2cc7c16b862c7232934233bd8bcc87482f3b1cee07b2b15887a2e3
PageCount 13
ParticipantIDs pascalfrancis_primary_16530287
crossref_primary_10_1016_j_amc_2003_12_089
crossref_citationtrail_10_1016_j_amc_2003_12_089
elsevier_sciencedirect_doi_10_1016_j_amc_2003_12_089
PublicationCentury 2000
PublicationDate 2005-03-04
PublicationDateYYYYMMDD 2005-03-04
PublicationDate_xml – month: 03
  year: 2005
  text: 2005-03-04
  day: 04
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2005
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Hansen, Jaumard, Savard (BIB7) 1992; 13
W. Bialas, M. Karwan, J. Shaw, A parametric complementary pivot approach for two-level linear programming, Technical Report 80-2, Operations Research Program, State University of New York at Buffalo, 1978
C. Shi, G. Zhang, J. Lu, On the definition of linear bilevel programming solution, Applied Mathematics and Computation, in press
Bard (BIB1) 1998
W. Bialas, M. Karwan, Multilevel linear programming, Technical Report 78-1, Operations Research Program, State University of New York at Buffalo, 1978
University of Cambridge, 2001. Available from
Bard, Falk (BIB5) 1982; 9
Aiyoshi, Shimizu (BIB9) 1981; 11
White, Anandalingam (BIB10) 1993; 3
Von Stackelberg (BIB2) 1952
Candler, Townsley (BIB3) 1982; 9
Bialas, Karwan (BIB4) 1984; 30
>
10.1016/j.amc.2003.12.089_BIB12
Aiyoshi (10.1016/j.amc.2003.12.089_BIB9) 1981; 11
10.1016/j.amc.2003.12.089_BIB11
Bard (10.1016/j.amc.2003.12.089_BIB5) 1982; 9
Candler (10.1016/j.amc.2003.12.089_BIB3) 1982; 9
Von Stackelberg (10.1016/j.amc.2003.12.089_BIB2) 1952
White (10.1016/j.amc.2003.12.089_BIB10) 1993; 3
10.1016/j.amc.2003.12.089_BIB6
Bialas (10.1016/j.amc.2003.12.089_BIB4) 1984; 30
Hansen (10.1016/j.amc.2003.12.089_BIB7) 1992; 13
Bard (10.1016/j.amc.2003.12.089_BIB1) 1998
10.1016/j.amc.2003.12.089_BIB8
References_xml – volume: 9
  start-page: 59
  year: 1982
  end-page: 76
  ident: BIB3
  article-title: A linear two-level programming problem
  publication-title: Computers and Operations Research
– year: 1952
  ident: BIB2
  article-title: The Theory of the Market Economy
– volume: 3
  start-page: 397
  year: 1993
  end-page: 419
  ident: BIB10
  article-title: A penalty function approach for solving bi-level linear programs
  publication-title: Journal of Global Optimization
– reference: W. Bialas, M. Karwan, J. Shaw, A parametric complementary pivot approach for two-level linear programming, Technical Report 80-2, Operations Research Program, State University of New York at Buffalo, 1978
– reference: C. Shi, G. Zhang, J. Lu, On the definition of linear bilevel programming solution, Applied Mathematics and Computation, in press
– volume: 13
  start-page: 1194
  year: 1992
  end-page: 1217
  ident: BIB7
  article-title: An extended branch-and-bound rules for linear bilevel programming
  publication-title: SIAM Journal on Scientific and Statistical Computing
– reference: W. Bialas, M. Karwan, Multilevel linear programming, Technical Report 78-1, Operations Research Program, State University of New York at Buffalo, 1978
– reference: >
– volume: 9
  start-page: 77
  year: 1982
  end-page: 100
  ident: BIB5
  article-title: An explicit solution to the multi-level programming problem
  publication-title: Computers and Operations Research
– volume: 11
  start-page: 444
  year: 1981
  end-page: 449
  ident: BIB9
  article-title: Hierarchical decentralized systems and its new solution by a barrier method
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– year: 1998
  ident: BIB1
  article-title: Practical Bilevel Optimization: Algorithms and Applications
– volume: 30
  start-page: 1004
  year: 1984
  end-page: 1020
  ident: BIB4
  article-title: Two-level linear programming
  publication-title: Management Science
– reference: University of Cambridge, 2001. Available from <
– volume: 13
  start-page: 1194
  year: 1992
  ident: 10.1016/j.amc.2003.12.089_BIB7
  article-title: An extended branch-and-bound rules for linear bilevel programming
  publication-title: SIAM Journal on Scientific and Statistical Computing
  doi: 10.1137/0913069
– ident: 10.1016/j.amc.2003.12.089_BIB11
– ident: 10.1016/j.amc.2003.12.089_BIB12
  doi: 10.1016/j.amc.2003.10.031
– year: 1998
  ident: 10.1016/j.amc.2003.12.089_BIB1
– volume: 11
  start-page: 444
  year: 1981
  ident: 10.1016/j.amc.2003.12.089_BIB9
  article-title: Hierarchical decentralized systems and its new solution by a barrier method
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1981.4308712
– ident: 10.1016/j.amc.2003.12.089_BIB6
– ident: 10.1016/j.amc.2003.12.089_BIB8
– year: 1952
  ident: 10.1016/j.amc.2003.12.089_BIB2
– volume: 9
  start-page: 59
  year: 1982
  ident: 10.1016/j.amc.2003.12.089_BIB3
  article-title: A linear two-level programming problem
  publication-title: Computers and Operations Research
  doi: 10.1016/0305-0548(82)90006-5
– volume: 9
  start-page: 77
  year: 1982
  ident: 10.1016/j.amc.2003.12.089_BIB5
  article-title: An explicit solution to the multi-level programming problem
  publication-title: Computers and Operations Research
  doi: 10.1016/0305-0548(82)90007-7
– volume: 30
  start-page: 1004
  year: 1984
  ident: 10.1016/j.amc.2003.12.089_BIB4
  article-title: Two-level linear programming
  publication-title: Management Science
  doi: 10.1287/mnsc.30.8.1004
– volume: 3
  start-page: 397
  year: 1993
  ident: 10.1016/j.amc.2003.12.089_BIB10
  article-title: A penalty function approach for solving bi-level linear programs
  publication-title: Journal of Global Optimization
  doi: 10.1007/BF01096412
SSID ssj0007614
Score 2.0947268
Snippet Kuhn–Tucker approach has been applied with remarkable success in linear bilevel programming (BLP). However, it still has some extent unsatisfactory and...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 51
SubjectTerms Calculus of variations and optimal control
Decision-making
Exact sciences and technology
Global analysis, analysis on manifolds
Kuhn–Tucker conditions
Linear bilevel programming
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Optimization
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Von Stackelberg game
Title An extended Kuhn–Tucker approach for linear bilevel programming
URI https://dx.doi.org/10.1016/j.amc.2003.12.089
Volume 162
WOSCitedRecordID wos000226859900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywGEKl4VhVLlwIlVUGIncXKMqqKWR4VEkfYW2Y69bdU1y-6m6pH_wD_klzB-ZXdbtaIHLlEUbZxs5svMePL5G4TeJm0G8zXZxqJSKs7ShMUskSJuZc45azOFObfNJujRUTkaVV99KXtu2wlQrcvLy2r6X00Nx8DYZunsHczdDwoHYB-MDlswO2z_yfC1ke13le3hp-5EBzoDcRSKXkXcEgxNkslmQw6-4UKeB7bWJMSzIE_rU9VJr_E6D-vhpt36t_xvtknwcO9E6vF4uczsc2fhctrDqC9UA0b1-GfnQRrqD7klYGWrPrUy7LmErPnUAl8Dj_OQXl7WxVrn2655cVdQOHvPJlZkktiCres0tK6YfSWS9fzCQF07a2AI02mTNCluYIj7aAPTvCoHaKM-3B997IM2LZwMfPgz4QO4pQJeuY-bUpjHUzaHF0u5jigracrxE7Tp5xdR7XDxFN2T-hl69GVpuOeornUUEBIZhPz59dthIwrYiAAbkcNG5LERrWDjBfr-Yf947yD2nTRiQTBdxBQrJQlpJRFYCCrSgsNMVlBIpysjAUl4W3IhSpqVWBGeQuaUUI55mkMMYliSLTTQP7R8iSKVtyoxEkxMqIwpWlaCwPC8kIxmsk22URIeTiO8zLzpdnLe3GiUbfSuP2XqNFZu-3EWnnjjk0SX_DWAnttO212zzvJChembVdJXd7mJ1-jh8lXYQYPFrJNv0ANxsTidz3Y9tv4CojeUZw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+extended+Kuhn%E2%80%93Tucker+approach+for+linear+bilevel+programming&rft.jtitle=Applied+mathematics+and+computation&rft.au=Shi%2C+Chenggen&rft.au=Lu%2C+Jie&rft.au=Zhang%2C+Guangquan&rft.date=2005-03-04&rft.issn=0096-3003&rft.volume=162&rft.issue=1&rft.spage=51&rft.epage=63&rft_id=info:doi/10.1016%2Fj.amc.2003.12.089&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2003_12_089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon