Sharp Bounds for Genetic Drift in Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) are a successful branch of evolutionary algorithms (EAs) that evolve a probabilistic model instead of a population. Analogous to genetic drift in EAs, EDAs also encounter the phenomenon that the random sampling in the model update can move the sampling fr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 24; no. 6; pp. 1140 - 1149
Main Authors: Doerr, Benjamin, Zheng, Weijie
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:1089-778X, 1941-0026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Estimation of distribution algorithms (EDAs) are a successful branch of evolutionary algorithms (EAs) that evolve a probabilistic model instead of a population. Analogous to genetic drift in EAs, EDAs also encounter the phenomenon that the random sampling in the model update can move the sampling frequencies to boundary values not justified by the fitness. This can result in a considerable performance loss. This article gives the first tight quantification of this effect for three EDAs and one ant colony optimizer, namely, for the univariate marginal distribution algorithm, the compact genetic algorithm, population-based incremental learning, and the max-min ant system with iteration-best update. Our results allow to choose the parameters of these algorithms in such a way that within a desired runtime, no sampling frequency approaches the boundary values without a clear indication from the objective function.
AbstractList Estimation of distribution algorithms (EDAs) are a successful branch of evolutionary algorithms (EAs) that evolve a probabilistic model instead of a population. Analogous to genetic drift in EAs, EDAs also encounter the phenomenon that the random sampling in the model update can move the sampling frequencies to boundary values not justified by the fitness. This can result in a considerable performance loss. This article gives the first tight quantification of this effect for three EDAs and one ant colony optimizer, namely, for the univariate marginal distribution algorithm, the compact genetic algorithm, population-based incremental learning, and the max-min ant system with iteration-best update. Our results allow to choose the parameters of these algorithms in such a way that within a desired runtime, no sampling frequency approaches the boundary values without a clear indication from the objective function.
Author Zheng, Weijie
Doerr, Benjamin
Author_xml – sequence: 1
  givenname: Benjamin
  orcidid: 0000-0002-9786-220X
  surname: Doerr
  fullname: Doerr, Benjamin
  email: doerr@lix.polytechnique.fr
  organization: Laboratoire d’Informatique, CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
– sequence: 2
  givenname: Weijie
  orcidid: 0000-0002-8483-0161
  surname: Zheng
  fullname: Zheng, Weijie
  email: zhengwj13@tsinghua.org.cn
  organization: Department of Computer Science and Technology, Tsinghua University, Beijing, China
BackLink https://hal.science/hal-04487372$$DView record in HAL
BookMark eNp9kL1OwzAUhS0EEm3hARBLJCaGFP8kcTyWtrRIlRgoiM1yYoe6SuNiO0i8PU5TdWBgse-1zrn3-BuC88Y0CoAbBMcIQfawnr9PxxhiOMYspyRDZ2CAWIJiCHF2HmqYs5jS_OMSDJ3bQoiSFLEBWLxuhN1Hj6ZtpIsqY6OFapTXZTSzuvKRbqK583onvDZNZKpopp23umgP_aT-NFb7zc5dgYtK1E5dH-8ReHuar6fLePWyeJ5OVnFJMPUxRbAoYIlzkuckwZJVCJdZSopU4lQhkWCWSklCUCylUBUtpVK0CBWSMhxkBO77uRtR870NwewPN0Lz5WTFuzeYJOH_FH932rteu7fmq1XO861pbRPicZxkNKwieRZUqFeV1jhnVXUaiyDv2PKOLe_Y8iPb4KF_PKX2B0TeCl3_67ztnVopddrEYJZQDMkvOE6IKQ
CODEN ITEVF5
CitedBy_id crossref_primary_10_1145_3472304
crossref_primary_10_1016_j_ic_2023_105125
crossref_primary_10_1109_TEVC_2023_3290670
crossref_primary_10_1109_ACCESS_2022_3162634
crossref_primary_10_1162_evco_a_00361
crossref_primary_10_1109_JSAC_2023_3280970
crossref_primary_10_1109_TEVC_2023_3314105
crossref_primary_10_1016_j_tcs_2022_08_014
crossref_primary_10_1007_s00453_024_01281_w
crossref_primary_10_1016_j_apenergy_2024_124601
crossref_primary_10_1016_j_tcs_2024_114622
crossref_primary_10_1109_TEVC_2021_3139304
crossref_primary_10_1007_s00453_020_00780_w
crossref_primary_10_1016_j_tcs_2023_114074
crossref_primary_10_1109_TEVC_2022_3229038
Cites_doi 10.1007/978-3-030-29414-4_9
10.1007/978-1-4471-0819-1_39
10.1007/978-3-540-34954-9_3
10.1007/978-3-662-12788-9_6
10.1145/3321707.3321747
10.1007/3-540-61723-X_982
10.1145/3205455.3205623
10.1109/ICEC.1998.700083
10.1016/j.tcs.2018.09.024
10.1016/j.tcs.2018.06.004
10.1162/evco.1999.7.4.353
10.1016/B978-1-55860-377-6.50014-1
10.1007/978-3-7091-6230-9_56
10.1016/S0004-3702(01)00058-3
10.1145/2908812.2908895
10.1016/j.orl.2006.11.005
10.1007/s00453-018-0480-z
10.1007/s00453-018-0463-0
10.1145/3205455.3205576
10.2307/3211856
10.1007/s11047-006-9001-0
10.1162/EVCO_a_00047
10.1007/3-540-58484-6_253
10.1145/1830483.1830493
10.1145/3299904.3340316
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1109/TEVC.2020.2987361
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 1149
ExternalDocumentID oai:HAL:hal-04487372v1
10_1109_TEVC_2020_2987361
9064720
Genre orig-research
GrantInformation_xml – fundername: Program for University Key Laboratory of Guangdong Province
  grantid: 2017KSYS008
  funderid: 10.13039/501100010226
– fundername: Program for Guangdong Introducing Innovative and Enterpreneurial Teams
  grantid: 2017ZT07X386
  funderid: 10.13039/501100007162
– fundername: Investissement d’Avenir Project, LabEx LMH, in a joint call with Gaspard Monge Program for optimization, operations research and their interactions with data sciences
  grantid: ANR-11-LABX-0056-LMH
  funderid: 10.13039/501100001665
– fundername: Science and Technology Innovation Committee Foundation of Shenzhen
  grantid: JCYJ20190809121403553
  funderid: 10.13039/501100010877
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2019A1515110177
  funderid: 10.13039/501100007162
– fundername: Shenzhen Peacock Plan
  grantid: KQTD2016112514355531
  funderid: 10.13039/501100012234
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c327t-710bb0c28388342d9f12c653b5d25e1a4295dd37782ddaef7cdee7baef1ddef13
IEDL.DBID RIE
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000595525700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Tue Oct 14 20:31:43 EDT 2025
Sun Nov 09 07:33:40 EST 2025
Sat Nov 29 03:13:48 EST 2025
Tue Nov 18 21:35:27 EST 2025
Wed Aug 27 02:32:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-710bb0c28388342d9f12c653b5d25e1a4295dd37782ddaef7cdee7baef1ddef13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9786-220X
0000-0002-8483-0161
OpenAccessLink https://hal.science/hal-04487372
PQID 2467295386
PQPubID 85418
PageCount 10
ParticipantIDs crossref_primary_10_1109_TEVC_2020_2987361
proquest_journals_2467295386
ieee_primary_9064720
crossref_citationtrail_10_1109_TEVC_2020_2987361
hal_primary_oai_HAL_hal_04487372v1
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref15
ref14
ref11
ref10
de bonet (ref2) 1996
ref1
ref17
ref16
ref19
ref18
baluja (ref6) 1994
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref5
motoo (ref12) 1964; 1
References_xml – ident: ref11
  doi: 10.1007/978-3-030-29414-4_9
– ident: ref3
  doi: 10.1007/978-1-4471-0819-1_39
– ident: ref5
  doi: 10.1007/978-3-540-34954-9_3
– ident: ref24
  doi: 10.1007/978-3-662-12788-9_6
– ident: ref23
  doi: 10.1145/3321707.3321747
– ident: ref8
  doi: 10.1007/3-540-61723-X_982
– ident: ref1
  doi: 10.1145/3205455.3205623
– ident: ref10
  doi: 10.1109/ICEC.1998.700083
– ident: ref26
  doi: 10.1016/j.tcs.2018.09.024
– ident: ref21
  doi: 10.1016/j.tcs.2018.06.004
– ident: ref4
  doi: 10.1162/evco.1999.7.4.353
– ident: ref7
  doi: 10.1016/B978-1-55860-377-6.50014-1
– start-page: 424
  year: 1996
  ident: ref2
  article-title: Mimic: Finding optima by estimating probability densities
  publication-title: Advances in neural information processing systems
– year: 1994
  ident: ref6
  article-title: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning
– ident: ref14
  doi: 10.1007/978-3-7091-6230-9_56
– ident: ref22
  doi: 10.1016/S0004-3702(01)00058-3
– ident: ref19
  doi: 10.1145/2908812.2908895
– ident: ref16
  doi: 10.1016/j.orl.2006.11.005
– ident: ref20
  doi: 10.1007/s00453-018-0480-z
– ident: ref17
  doi: 10.1007/s00453-018-0463-0
– ident: ref18
  doi: 10.1145/3205455.3205576
– volume: 1
  start-page: 177
  year: 1964
  ident: ref12
  article-title: Diffusion models in population genetics
  publication-title: J Appl Probab
  doi: 10.2307/3211856
– ident: ref15
  doi: 10.1007/s11047-006-9001-0
– ident: ref25
  doi: 10.1162/EVCO_a_00047
– ident: ref13
  doi: 10.1007/3-540-58484-6_253
– ident: ref9
  doi: 10.1145/1830483.1830493
– ident: ref27
  doi: 10.1145/3299904.3340316
SSID ssj0014519
Score 2.5460598
Snippet Estimation of distribution algorithms (EDAs) are a successful branch of evolutionary algorithms (EAs) that evolve a probabilistic model instead of a...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1140
SubjectTerms Computational modeling
Computer Science
Drift estimation
Estimation of distribution algorithms (EDAs)
Evolutionary algorithms
Genetic algorithms
genetic drift
Genetics
Iterative methods
Machine learning
Probabilistic logic
Probabilistic models
Random sampling
running time analysis
Sociology
Statistics
theory
Time-frequency analysis
Title Sharp Bounds for Genetic Drift in Estimation of Distribution Algorithms
URI https://ieeexplore.ieee.org/document/9064720
https://www.proquest.com/docview/2467295386
https://hal.science/hal-04487372
Volume 24
WOSCitedRecordID wos000595525700012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYAcYADjwFivBQhTohBk6xtchww4IAQB0C7VW0ebBJsaBv8fuw2q0AgJG59OFWar4ntxv4McFQU1miOE8nEad5qcytbuS9olz2VStlYaWfLYhPp3Z3q9fT9HJzUuTDOuTL4zJ3SYbmXb0fmnX6VnWnKjBTooM-naVLlatU7BkSTUgXTa7QYVS_sYPJInz10ny7QExTRqUAPWyb8mw6a71MEZFla5cd6XCqZq9X_dW8NVoIxyToV-usw54YNWJ0VamBh3jZg-QvrYAOWyMCs-Jk34JoYm9_YOVVXmjC0YBkRUeM9djke-CkbDFkXRasERzby7JKYdkORLNZ5eR6NB9P-62QTHq-6Dxc3rVBcoWWkSKcUg1kUkUHrQinZFlZ7LkwSyyK2InY8Rz0VWytxKIW1ufOpsc6lBR5xXBE9l1uwMBwN3TYwodvC-zjx3rm2SmSBD0TLEU-5QIswb0I0G-7MBOZxKoDxkpUeSKQzQigjhLKAUBOO6yZvFe3GX8KHiGEtR4TZN53bjK5F6H1SIZ4PFNogxGqpAFYT9maQZ2H2TjKB2gNfX6pk5_dWu7BEHajCWvZgYTp-d_uwaD4QvfFB-WF-Avly3yM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VgkQ5tJAWNVDAQpwQadf2Puxj2qYEESIOAeVm7fpBI7VJlaT9_czsOisqKiRu-xivvP7Wnpn1zDcAH6rKWc1xItmsKHspd7JXhop22QuplMuU9q4uNlGMx2o61d-34FObC-O9r4PP_DEd1nv5bmFv6VfZiabMSIEO-uMsTUXSZGu1ewZElNKE02u0GdU07mHyRJ9MBj_P0BcUybFAH1vm_J4WenRJMZB1cZW_VuRazVzs_V8Hn8NuNCdZv8H_BWz5eQf2NqUaWJy5HXj2B-9gB3bIxGwYmvfhM3E237BTqq-0YmjDMqKixnvsfDkLazabswGKNimObBHYOXHtxjJZrH_1a7GcrS-vVwfw42IwORv2YnmFnpWiWFMUZlUlFu0LpWQqnA5c2DyTVeZE5nmJmipzTuJQCudKHwrrvC8qPOK4JgYuX8L2fDH3h8CETkUIWR6C96nKZYUPRNsRT7lAm7DsQrIZbmMj9ziVwLgytQ-SaEMIGULIRIS68LFtctMQb_xL-D1i2MoRZfawPzJ0LUH_k0rx3KHQPiHWSkWwunC0gdzE-bsyAvUHvr5U-auHW72Dp8PJt5EZfRl_fQ071JkmyOUIttfLW_8Gntg7RHL5tv5IfwO8V-Jq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sharp+Bounds+for+Genetic+Drift+in+Estimation+of+Distribution+Algorithms&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Doerr%2C+Benjamin&rft.au=Zheng%2C+Weijie&rft.date=2020-12-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=24&rft.issue=6&rft.spage=1140&rft.epage=1149&rft_id=info:doi/10.1109%2FTEVC.2020.2987361&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04487372v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon