The Hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves
Multiple-soliton solutions for three model equations for shallow water waves are determined. The three models are completely integrable. The Hirota bilinear method is used to determine multiple-soliton solutions of sech-squared type for these equations. The tanh–coth method is used to obtain single...
Uložené v:
| Vydané v: | Applied mathematics and computation Ročník 201; číslo 1; s. 489 - 503 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
Elsevier Inc
15.07.2008
Elsevier |
| Predmet: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Multiple-soliton solutions for three model equations for shallow water waves are determined. The three models are completely integrable. The Hirota bilinear method is used to determine multiple-soliton solutions of sech-squared type for these equations. The tanh–coth method is used to obtain single soliton solutions and other solutions for these three models. The three models have different linear dispersion relations, but possess the same coefficients for the polynomials of exponentials. |
|---|---|
| ISSN: | 0096-3003 1873-5649 |
| DOI: | 10.1016/j.amc.2007.12.037 |