Ranks and the least-norm of the general solution to a system of quaternion matrix equations

We in this paper first establish a new expression of the general solution to the consistent system of linear quaternion matrix equations A 1 X 1 = C 1 , A 2 X 2 = C 2 , A 3 X 1 B 1 + A 4 X 2 B 2 = C 3 , which was investigated recently [Q.W. Wang, H.X. Chang, C.Y. Lin, P-(skew)symmetric common soluti...

Full description

Saved in:
Bibliographic Details
Published in:Linear algebra and its applications Vol. 430; no. 5; pp. 1626 - 1640
Main Authors: Wang, Qing-Wen, Li, Cheng-Kun
Format: Journal Article Conference Proceeding
Language:English
Published: Amsterdam Elsevier Inc 01.03.2009
Elsevier
Subjects:
ISSN:0024-3795
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We in this paper first establish a new expression of the general solution to the consistent system of linear quaternion matrix equations A 1 X 1 = C 1 , A 2 X 2 = C 2 , A 3 X 1 B 1 + A 4 X 2 B 2 = C 3 , which was investigated recently [Q.W. Wang, H.X. Chang, C.Y. Lin, P-(skew)symmetric common solutions to a pair of quaternion matrix equations, Appl. Math. Comput. 195 (2008) 721–732], then derive the maximal and minimal ranks and the least-norm of the general solution to the system mentioned above. Some previous known results can be viewed as special cases of the results of this paper.
AbstractList We in this paper first establish a new expression of the general solution to the consistent system of linear quaternion matrix equations A 1 X 1 = C 1 , A 2 X 2 = C 2 , A 3 X 1 B 1 + A 4 X 2 B 2 = C 3 , which was investigated recently [Q.W. Wang, H.X. Chang, C.Y. Lin, P-(skew)symmetric common solutions to a pair of quaternion matrix equations, Appl. Math. Comput. 195 (2008) 721–732], then derive the maximal and minimal ranks and the least-norm of the general solution to the system mentioned above. Some previous known results can be viewed as special cases of the results of this paper.
Author Wang, Qing-Wen
Li, Cheng-Kun
Author_xml – sequence: 1
  givenname: Qing-Wen
  surname: Wang
  fullname: Wang, Qing-Wen
  email: wqw858@yahoo.com.cn
– sequence: 2
  givenname: Cheng-Kun
  surname: Li
  fullname: Li, Cheng-Kun
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21300394$$DView record in Pascal Francis
BookMark eNp9kD9PwzAQxT0UibbwAdi8MCac7bRJxIQq_kmVkBBMDJZjn8EldYrtIvrtSVpYGJhO9-79TndvQka-80jIGYOcAZtfrPJWqZwDVDnMchBsRMYAvMhEWc-OySTGFQAUJfAxeXlU_j1S5Q1Nb0hbVDFlvgtr2tm98ooeg2pp7Nptcp2nqaOKxl1MuPd8bFXC4IfJWqXgvigOUt_HE3JkVRvx9KdOyfPN9dPiLls-3N4vrpaZFrxMmbAzKKraaF5bEJwZo-ZokVloWNUUxuCcIVgwQjelHVRdoa0ZZ1g21mgxJeeHvRsVtWptUF67KDfBrVXYSc4EgKiL3lcefDp0MQa0Uru0PzUF5VrJQA75yZXs85NDfhJmss-vJ9kf8nf5f8zlgcH-9U-HQUbt0Gs0LqBO0nTuH_obNpmOgA
CODEN LAAPAW
CitedBy_id crossref_primary_10_1016_j_apm_2011_01_022
crossref_primary_10_1016_j_jfranklin_2016_12_011
crossref_primary_10_1155_2021_1497335
crossref_primary_10_1002_mma_2955
crossref_primary_10_1007_s12190_017_1156_6
crossref_primary_10_1016_j_camwa_2016_01_026
crossref_primary_10_1016_j_camwa_2017_06_001
crossref_primary_10_1080_03081087_2010_509928
crossref_primary_10_1080_03081087_2018_1543383
crossref_primary_10_1007_s10255_011_0083_9
crossref_primary_10_1155_2019_7939238
crossref_primary_10_1080_03081087_2018_1536732
crossref_primary_10_1007_s00006_017_0806_y
crossref_primary_10_3390_sym13101825
crossref_primary_10_1080_03081087_2010_524363
crossref_primary_10_1007_s11063_017_9608_4
crossref_primary_10_1016_j_amc_2013_09_062
crossref_primary_10_1016_j_amc_2011_08_018
crossref_primary_10_1007_s00006_017_0782_2
crossref_primary_10_1007_s10957_015_0737_5
crossref_primary_10_1080_03081087_2021_1954140
crossref_primary_10_1142_S1005386716000092
crossref_primary_10_1049_iet_spr_2018_5127
crossref_primary_10_1016_j_amc_2012_08_042
crossref_primary_10_1109_TIT_2016_2519028
crossref_primary_10_1016_j_camwa_2018_07_044
crossref_primary_10_1016_S0252_9602_12_60153_2
crossref_primary_10_1177_0142331214527769
crossref_primary_10_1007_s40995_017_0472_x
crossref_primary_10_1051_fopen_2019021
crossref_primary_10_1109_TNNLS_2022_3225309
crossref_primary_10_1080_00207160_2012_722626
crossref_primary_10_1016_j_amc_2010_07_004
crossref_primary_10_1080_00927872_2011_562269
crossref_primary_10_1016_j_camwa_2014_02_003
crossref_primary_10_1002_mma_7273
crossref_primary_10_1016_j_camwa_2014_04_012
crossref_primary_10_1016_j_amc_2018_03_119
crossref_primary_10_1016_j_apnum_2020_08_001
crossref_primary_10_1016_j_camwa_2010_03_052
crossref_primary_10_1049_iet_ipr_2015_0611
crossref_primary_10_1016_j_amc_2018_11_064
crossref_primary_10_1016_j_jfranklin_2014_08_003
crossref_primary_10_1016_j_apm_2009_06_018
crossref_primary_10_1016_j_jfranklin_2013_07_008
crossref_primary_10_1016_j_laa_2009_11_014
crossref_primary_10_1108_EC_04_2011_0039
crossref_primary_10_1016_j_camwa_2016_12_029
crossref_primary_10_1016_j_camwa_2017_08_041
crossref_primary_10_1016_j_amc_2012_09_024
crossref_primary_10_1177_0142331219875273
crossref_primary_10_1016_j_laa_2012_07_004
crossref_primary_10_1016_j_amc_2013_05_069
crossref_primary_10_1016_j_apm_2015_04_011
crossref_primary_10_1007_s40314_019_0921_6
crossref_primary_10_1155_2013_514984
crossref_primary_10_1016_j_apnum_2021_08_010
crossref_primary_10_1080_00207160_2018_1449946
crossref_primary_10_1007_s40995_021_01083_7
crossref_primary_10_1016_j_aml_2014_03_013
crossref_primary_10_1016_j_amc_2013_07_025
crossref_primary_10_1002_asjc_362
crossref_primary_10_1016_j_amc_2015_07_022
crossref_primary_10_1016_j_mcm_2009_12_022
crossref_primary_10_1080_03081087_2012_703192
crossref_primary_10_1155_2019_9072690
crossref_primary_10_1155_2014_457298
crossref_primary_10_1155_2014_543610
crossref_primary_10_1177_1077546309351893
crossref_primary_10_1016_j_amc_2010_04_053
crossref_primary_10_1007_s11425_010_4154_9
crossref_primary_10_1016_j_camwa_2015_06_030
crossref_primary_10_1080_03081087_2014_918615
crossref_primary_10_1016_j_amc_2013_10_031
crossref_primary_10_1007_s40065_023_00439_8
crossref_primary_10_1016_j_laa_2009_02_010
crossref_primary_10_1080_03081087_2013_839667
crossref_primary_10_1142_S1005386712000132
crossref_primary_10_1016_j_apm_2015_07_017
crossref_primary_10_1016_j_jfranklin_2018_07_015
crossref_primary_10_1002_cem_3023
crossref_primary_10_4028_www_scientific_net_AMM_50_51_391
crossref_primary_10_1007_s12346_020_00355_8
crossref_primary_10_1007_s40314_020_01335_z
crossref_primary_10_1080_10236198_2021_1944122
crossref_primary_10_1155_2013_961568
crossref_primary_10_1080_03081087_2015_1037302
crossref_primary_10_1142_S100538671100023X
crossref_primary_10_3390_math12152341
crossref_primary_10_1177_0142331213511108
crossref_primary_10_14317_jami_2016_095
crossref_primary_10_1142_S100538671400039X
crossref_primary_10_1007_s10958_011_0626_x
crossref_primary_10_1016_j_jfranklin_2016_06_008
crossref_primary_10_1016_j_camwa_2017_02_012
crossref_primary_10_1108_02644401111179018
crossref_primary_10_1016_j_apnum_2021_07_001
crossref_primary_10_1155_2013_952974
crossref_primary_10_1177_0142331212465105
crossref_primary_10_1007_s11425_013_4596_y
crossref_primary_10_1002_mma_3017
crossref_primary_10_1007_s00006_019_0972_1
crossref_primary_10_1177_1077546312467810
crossref_primary_10_1016_j_amc_2015_05_104
crossref_primary_10_1080_03081087_2017_1395388
crossref_primary_10_3390_sym14102190
crossref_primary_10_1186_1029_242X_2013_280
crossref_primary_10_1016_j_jfranklin_2015_05_024
crossref_primary_10_1007_s00521_014_1578_0
crossref_primary_10_1007_s40314_014_0138_7
crossref_primary_10_1007_s00006_020_01102_7
crossref_primary_10_1007_s00006_016_0688_4
crossref_primary_10_1155_2014_515816
Cites_doi 10.1080/03081087408817070
10.1080/0308108031000114631
10.1016/j.amc.2007.08.091
10.1016/0024-3795(87)90217-5
10.1016/j.amc.2007.05.021
10.1016/S0024-3795(02)00345-2
10.1016/j.camwa.2006.05.011
10.1016/j.laa.2003.12.039
10.1016/S0024-3795(03)00420-8
10.1016/0024-3795(84)90166-6
10.1016/j.amc.2007.05.018
10.1016/0024-3795(90)90377-O
10.1016/j.amc.2006.12.039
10.1080/03081080008818664
10.1016/j.amc.2006.06.012
ContentType Journal Article
Conference Proceeding
Copyright 2008 Elsevier Inc.
2009 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier Inc.
– notice: 2009 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.laa.2008.05.031
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 1640
ExternalDocumentID 21300394
10_1016_j_laa_2008_05_031
S0024379508002954
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXKI
AAXUO
ABAOU
ABDPE
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADVLN
AEBSH
AEKER
AENEX
AEXQZ
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
T9H
TN5
TWZ
WH7
WUQ
XPP
YQT
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AETEA
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-3f50489dc29f0321dda6efe1f0b18b4dde61e0f0d3cb7ff0b1c8ef9121e7bfdc3
ISICitedReferencesCount 141
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000263533400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0024-3795
IngestDate Mon Jul 21 09:13:39 EDT 2025
Tue Nov 18 22:18:31 EST 2025
Sat Nov 29 05:08:52 EST 2025
Tue Dec 03 03:44:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords System of quaternion matrix equations
15A24
Moore–Penrose inverse
Linear matrix expression
15A33
Minimal rank
15A03
Least-norm
15A60
Maximal rank
15A09
Antisymmetric matrix
Operator equation
Moore Penrose inverse
Quaternion
Normed space
Generalized inverse
Moore-Penrose inverse
Linear system
Matrix inversion
Ring
Matrix equation
Normed algebra
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MeetingName Special Issue devoted to the 14th ILAS Conference
MergedId FETCHMERGED-LOGICAL-c327t-3f50489dc29f0321dda6efe1f0b18b4dde61e0f0d3cb7ff0b1c8ef9121e7bfdc3
OpenAccessLink https://dx.doi.org/10.1016/j.laa.2008.05.031
PageCount 15
ParticipantIDs pascalfrancis_primary_21300394
crossref_citationtrail_10_1016_j_laa_2008_05_031
crossref_primary_10_1016_j_laa_2008_05_031
elsevier_sciencedirect_doi_10_1016_j_laa_2008_05_031
PublicationCentury 2000
PublicationDate 2009-03-01
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Linear algebra and its applications
PublicationYear 2009
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Uhlig (bib5) 1987; 85
Q.W. Wang, G.J. Song, Maximal and minimal ranks of the common solution of some linear matrix equations over an arbitrary division ring, Algebra Colloquium, in press.
Tian (bib16) 2000; 48
Wang, Chang, Ning (bib17) 2008; 198
Marsaglia, Styan (bib19) 1974; 2
Tian (bib14) 2002; 355
Tian (bib10) 2003; 51
Liu (bib9) 2006; 52
Wang, Chang, Lin (bib2) 2008; 195
Mitra (bib3) 1984; 59
Farenick, Pidkowich (bib20) 2003; 371
Wang, Wu, Lin (bib6) 2006; 182
Hungerford (bib1) 1980
Wang (bib18) 2004; 384
Tian (bib11) 2006; 1
Wang, Song, Lin (bib7) 2007; 189
Lin, Wang (bib12) 2006; 10
Tian (bib21) 2002; 19
Mitra (bib4) 1990; 131
Wang, Yu, Lin (bib8) 2008; 195
Tian, Cheng (bib15) 2003; 9
Wang (10.1016/j.laa.2008.05.031_bib7) 2007; 189
Wang (10.1016/j.laa.2008.05.031_bib18) 2004; 384
Tian (10.1016/j.laa.2008.05.031_bib21) 2002; 19
10.1016/j.laa.2008.05.031_bib13
Wang (10.1016/j.laa.2008.05.031_bib2) 2008; 195
Tian (10.1016/j.laa.2008.05.031_bib15) 2003; 9
Liu (10.1016/j.laa.2008.05.031_bib9) 2006; 52
Uhlig (10.1016/j.laa.2008.05.031_bib5) 1987; 85
Tian (10.1016/j.laa.2008.05.031_bib16) 2000; 48
Tian (10.1016/j.laa.2008.05.031_bib10) 2003; 51
Tian (10.1016/j.laa.2008.05.031_bib11) 2006; 1
Hungerford (10.1016/j.laa.2008.05.031_bib1) 1980
Marsaglia (10.1016/j.laa.2008.05.031_bib19) 1974; 2
Wang (10.1016/j.laa.2008.05.031_bib8) 2008; 195
Tian (10.1016/j.laa.2008.05.031_bib14) 2002; 355
Mitra (10.1016/j.laa.2008.05.031_bib4) 1990; 131
Farenick (10.1016/j.laa.2008.05.031_bib20) 2003; 371
Mitra (10.1016/j.laa.2008.05.031_bib3) 1984; 59
Wang (10.1016/j.laa.2008.05.031_bib17) 2008; 198
Lin (10.1016/j.laa.2008.05.031_bib12) 2006; 10
Wang (10.1016/j.laa.2008.05.031_bib6) 2006; 182
References_xml – year: 1980
  ident: bib1
  article-title: Algebra
– volume: 10
  start-page: 57
  year: 2006
  end-page: 65
  ident: bib12
  article-title: The minimal and maximal ranks of the general solution to a system of matrix equations over an arbitrary division ring
  publication-title: Math. Sci. Res. J.
– volume: 355
  start-page: 187
  year: 2002
  end-page: 214
  ident: bib14
  article-title: Upper and lower bounds for ranks of matrix expressions using generalized inverses
  publication-title: Linear Algebra Appl.
– volume: 371
  start-page: 75
  year: 2003
  end-page: 102
  ident: bib20
  article-title: The spectral theorem in quaternions
  publication-title: Linear Algebra Appl.
– volume: 182
  start-page: 1755
  year: 2006
  end-page: 1764
  ident: bib6
  article-title: Extremal ranks of a quaternion matrix expression subject to consistent systems of quaternion matrix equations with applications
  publication-title: Appl. Math. Comput.
– volume: 52
  start-page: 861
  year: 2006
  end-page: 872
  ident: bib9
  article-title: Ranks of solutions of the linear matrix equation
  publication-title: Comput. Math. Appl.
– volume: 189
  start-page: 1517
  year: 2007
  end-page: 1532
  ident: bib7
  article-title: Extreme ranks of the solution to a consistent system of linear quaternion matrix equations with an application
  publication-title: Appl. Math. Comput.
– reference: Q.W. Wang, G.J. Song, Maximal and minimal ranks of the common solution of some linear matrix equations over an arbitrary division ring, Algebra Colloquium, in press.
– volume: 1
  start-page: 75
  year: 2006
  end-page: 84
  ident: bib11
  article-title: Ranks and independence of solutions of the matrix equation
  publication-title: Acta Math. Univ. Comenianae
– volume: 9
  start-page: 345
  year: 2003
  end-page: 362
  ident: bib15
  article-title: The maximal and minimal ranks of
  publication-title: New York J. Math.
– volume: 198
  start-page: 209
  year: 2008
  end-page: 226
  ident: bib17
  article-title: The common solution to six quaternion matrix equations with applications
  publication-title: Appl. Math. Comput.
– volume: 19
  start-page: 181
  year: 2002
  end-page: 193
  ident: bib21
  article-title: Equalities and inequalities for traces of quaternionic matrices
  publication-title: Algebras Groups Geom.
– volume: 48
  start-page: 123
  year: 2000
  end-page: 147
  ident: bib16
  article-title: Solvability of two linear matrix equations
  publication-title: Linear and Multilinear Algebra
– volume: 195
  start-page: 733
  year: 2008
  end-page: 744
  ident: bib8
  article-title: Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations with applications
  publication-title: Appl. Math. Comput.
– volume: 384
  start-page: 43
  year: 2004
  end-page: 54
  ident: bib18
  article-title: A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity
  publication-title: Linear Algebra Appl.
– volume: 59
  start-page: 171
  year: 1984
  end-page: 181
  ident: bib3
  article-title: The matrix equations
  publication-title: Linear Algebra Appl.
– volume: 85
  start-page: 203
  year: 1987
  end-page: 209
  ident: bib5
  article-title: On the matrix equation
  publication-title: Linear Algebra Appl.
– volume: 51
  start-page: 111
  year: 2003
  end-page: 125
  ident: bib10
  article-title: Ranks of solutions of the matrix equation
  publication-title: Linear and Multilinear Algebra
– volume: 195
  start-page: 721
  year: 2008
  end-page: 732
  ident: bib2
  publication-title: Appl. Math. Comput.
– volume: 131
  start-page: 107
  year: 1990
  end-page: 123
  ident: bib4
  article-title: A pair of simultaneous linear matrix equations
  publication-title: Linear Algebra Appl.
– volume: 2
  start-page: 269
  year: 1974
  end-page: 292
  ident: bib19
  article-title: Equalities and inequalities for ranks of matrices
  publication-title: Linear and Multilinear Algebra
– volume: 2
  start-page: 269
  year: 1974
  ident: 10.1016/j.laa.2008.05.031_bib19
  article-title: Equalities and inequalities for ranks of matrices
  publication-title: Linear and Multilinear Algebra
  doi: 10.1080/03081087408817070
– volume: 51
  start-page: 111
  issue: 2
  year: 2003
  ident: 10.1016/j.laa.2008.05.031_bib10
  article-title: Ranks of solutions of the matrix equation AXB=C
  publication-title: Linear and Multilinear Algebra
  doi: 10.1080/0308108031000114631
– volume: 198
  start-page: 209
  year: 2008
  ident: 10.1016/j.laa.2008.05.031_bib17
  article-title: The common solution to six quaternion matrix equations with applications
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.08.091
– volume: 85
  start-page: 203
  year: 1987
  ident: 10.1016/j.laa.2008.05.031_bib5
  article-title: On the matrix equation AX=B with applications to the generators of controllability matrix
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(87)90217-5
– volume: 195
  start-page: 721
  year: 2008
  ident: 10.1016/j.laa.2008.05.031_bib2
  article-title: P-(skew)symmetric common solutions to a pair of quaternion matrix equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.05.021
– volume: 355
  start-page: 187
  year: 2002
  ident: 10.1016/j.laa.2008.05.031_bib14
  article-title: Upper and lower bounds for ranks of matrix expressions using generalized inverses
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(02)00345-2
– volume: 52
  start-page: 861
  year: 2006
  ident: 10.1016/j.laa.2008.05.031_bib9
  article-title: Ranks of solutions of the linear matrix equation AX+YB=C
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.05.011
– volume: 384
  start-page: 43
  year: 2004
  ident: 10.1016/j.laa.2008.05.031_bib18
  article-title: A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2003.12.039
– volume: 371
  start-page: 75
  year: 2003
  ident: 10.1016/j.laa.2008.05.031_bib20
  article-title: The spectral theorem in quaternions
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(03)00420-8
– ident: 10.1016/j.laa.2008.05.031_bib13
– volume: 19
  start-page: 181
  issue: 2
  year: 2002
  ident: 10.1016/j.laa.2008.05.031_bib21
  article-title: Equalities and inequalities for traces of quaternionic matrices
  publication-title: Algebras Groups Geom.
– volume: 59
  start-page: 171
  year: 1984
  ident: 10.1016/j.laa.2008.05.031_bib3
  article-title: The matrix equations AX=C, XB=D
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(84)90166-6
– volume: 195
  start-page: 733
  year: 2008
  ident: 10.1016/j.laa.2008.05.031_bib8
  article-title: Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations with applications
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.05.018
– volume: 131
  start-page: 107
  year: 1990
  ident: 10.1016/j.laa.2008.05.031_bib4
  article-title: A pair of simultaneous linear matrix equations A1XB1=C1, A2XB2=C2 and a programming problem
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(90)90377-O
– year: 1980
  ident: 10.1016/j.laa.2008.05.031_bib1
– volume: 189
  start-page: 1517
  year: 2007
  ident: 10.1016/j.laa.2008.05.031_bib7
  article-title: Extreme ranks of the solution to a consistent system of linear quaternion matrix equations with an application
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.12.039
– volume: 48
  start-page: 123
  year: 2000
  ident: 10.1016/j.laa.2008.05.031_bib16
  article-title: Solvability of two linear matrix equations
  publication-title: Linear and Multilinear Algebra
  doi: 10.1080/03081080008818664
– volume: 10
  start-page: 57
  issue: 3
  year: 2006
  ident: 10.1016/j.laa.2008.05.031_bib12
  article-title: The minimal and maximal ranks of the general solution to a system of matrix equations over an arbitrary division ring
  publication-title: Math. Sci. Res. J.
– volume: 182
  start-page: 1755
  year: 2006
  ident: 10.1016/j.laa.2008.05.031_bib6
  article-title: Extremal ranks of a quaternion matrix expression subject to consistent systems of quaternion matrix equations with applications
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.06.012
– volume: 1
  start-page: 75
  year: 2006
  ident: 10.1016/j.laa.2008.05.031_bib11
  article-title: Ranks and independence of solutions of the matrix equation AXB+CYD=M
  publication-title: Acta Math. Univ. Comenianae
– volume: 9
  start-page: 345
  year: 2003
  ident: 10.1016/j.laa.2008.05.031_bib15
  article-title: The maximal and minimal ranks of A-BXC with applications
  publication-title: New York J. Math.
SSID ssj0004702
Score 2.2821865
Snippet We in this paper first establish a new expression of the general solution to the consistent system of linear quaternion matrix equations A 1 X 1 = C 1 , A 2 X...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1626
SubjectTerms Algebra
Exact sciences and technology
Least-norm
Linear and multilinear algebra, matrix theory
Linear matrix expression
Mathematics
Maximal rank
Minimal rank
Moore–Penrose inverse
Sciences and techniques of general use
System of quaternion matrix equations
Title Ranks and the least-norm of the general solution to a system of quaternion matrix equations
URI https://dx.doi.org/10.1016/j.laa.2008.05.031
Volume 430
WOSCitedRecordID wos000263533400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0024-3795
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 20180131
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004702
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgHEYcAQg23ygROTpyR2Evs4TUMMxjTQEJU4RLZjI0ZJu7Wd-ufzXNtJOsYQBy5R5Nh16t_Le89-Xwi90rzQNa8NfGlUEmaNJSqXmuiyYFoLyxKfMv-kPD3lw6E4GwwmMRbmelQ2DV8sxOS_Qg1tALYLnf0HuNsfhQa4B9DhCrDD9Xfgb5U_sL906XlcBQ_YC7fmgb6tuk8pn2TzY9p6Uo5cMR_SgCob3Qe--czUe_G1nboqQwpo1-dyLt2ponvy0yX8X-yZy3l_GmD5Bz406iO8KPnSRZ-dHHuTv4Hm9_Nm5QhCdD5Y_lwsCPE-n80YsC5fPjPyWRYMMJ6gctLnm2mRFT0ZDHu45Fb-7o8aLvZHUgY_2Hw_CWJkJZf2DRnXeh5mznxHBbuH1jNacOCJ6wfHR8N3XSxtmYQM8_4fREv40ifwxrR_0mUeTeQUvjDrS6P09JXzDbTZRXLis5ZGHqOBaZ6ghx_aXL3Tp-jrEn8M-GNoxR3-eGyXLQF_HPHHszGW2OPv-nT4Y48_bvHfRJ_fHJ0fviWh5AbRNCtnhNocWLqodSZsQrO0rmVhrEltolKuGMjCIjWJTWqqVWldq-bGijRLTalsrekztNaMG_McYeFCqBWlQuWUKZVJDnfcZXjkAgaJLZTExat0yEfvyqKMquh4eFHBeoc6qXkF672FXrdDJj4Zy12dWUSkCtqk1xIrIKa7hu2uoNdOFCnnxd86vEQPuo9kG63NruZmB93X17Pv06vdQG-_AKjvoB0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Linear+algebra+and+its+applications&rft.atitle=Ranks+and+the+least-norm+of+the+general+solution+to+a+system+of+quaternion+matrix+equations&rft.au=WANG%2C+Qing-Wen&rft.au=LI%2C+Cheng-Kun&rft.date=2009-03-01&rft.pub=Elsevier&rft.issn=0024-3795&rft.volume=430&rft.issue=5-6&rft.spage=1626&rft.epage=1640&rft_id=info:doi/10.1016%2Fj.laa.2008.05.031&rft.externalDBID=n%2Fa&rft.externalDocID=21300394
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon