Ranks and the least-norm of the general solution to a system of quaternion matrix equations
We in this paper first establish a new expression of the general solution to the consistent system of linear quaternion matrix equations A 1 X 1 = C 1 , A 2 X 2 = C 2 , A 3 X 1 B 1 + A 4 X 2 B 2 = C 3 , which was investigated recently [Q.W. Wang, H.X. Chang, C.Y. Lin, P-(skew)symmetric common soluti...
Uloženo v:
| Vydáno v: | Linear algebra and its applications Ročník 430; číslo 5; s. 1626 - 1640 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Inc
01.03.2009
Elsevier |
| Témata: | |
| ISSN: | 0024-3795 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We in this paper first establish a new expression of the general solution to the consistent system of linear quaternion matrix equations
A
1
X
1
=
C
1
,
A
2
X
2
=
C
2
,
A
3
X
1
B
1
+
A
4
X
2
B
2
=
C
3
, which was investigated recently [Q.W. Wang, H.X. Chang, C.Y. Lin,
P-(skew)symmetric common solutions to a pair of quaternion matrix equations, Appl. Math. Comput. 195 (2008) 721–732], then derive the maximal and minimal ranks and the least-norm of the general solution to the system mentioned above. Some previous known results can be viewed as special cases of the results of this paper. |
|---|---|
| ISSN: | 0024-3795 |
| DOI: | 10.1016/j.laa.2008.05.031 |