Ranks and the least-norm of the general solution to a system of quaternion matrix equations

We in this paper first establish a new expression of the general solution to the consistent system of linear quaternion matrix equations A 1 X 1 = C 1 , A 2 X 2 = C 2 , A 3 X 1 B 1 + A 4 X 2 B 2 = C 3 , which was investigated recently [Q.W. Wang, H.X. Chang, C.Y. Lin, P-(skew)symmetric common soluti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear algebra and its applications Ročník 430; číslo 5; s. 1626 - 1640
Hlavní autoři: Wang, Qing-Wen, Li, Cheng-Kun
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 01.03.2009
Elsevier
Témata:
ISSN:0024-3795
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We in this paper first establish a new expression of the general solution to the consistent system of linear quaternion matrix equations A 1 X 1 = C 1 , A 2 X 2 = C 2 , A 3 X 1 B 1 + A 4 X 2 B 2 = C 3 , which was investigated recently [Q.W. Wang, H.X. Chang, C.Y. Lin, P-(skew)symmetric common solutions to a pair of quaternion matrix equations, Appl. Math. Comput. 195 (2008) 721–732], then derive the maximal and minimal ranks and the least-norm of the general solution to the system mentioned above. Some previous known results can be viewed as special cases of the results of this paper.
ISSN:0024-3795
DOI:10.1016/j.laa.2008.05.031