Geometry-Guided Dense Perspective Network for Speech-Driven Facial Animation
Realistic speech-driven 3D facial animation is a challenging problem due to the complex relationship between speech and face. In this paper, we propose a deep architecture, called Geometry-guided Dense Perspective Network (GDPnet) , to achieve speaker-independent realistic 3D facial animation. The e...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on visualization and computer graphics Jg. 28; H. 12; S. 4873 - 4886 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Realistic speech-driven 3D facial animation is a challenging problem due to the complex relationship between speech and face. In this paper, we propose a deep architecture, called Geometry-guided Dense Perspective Network (GDPnet) , to achieve speaker-independent realistic 3D facial animation. The encoder is designed with dense connections to strengthen feature propagation and encourage the re-use of audio features, and the decoder is integrated with an attention mechanism to adaptively recalibrate point-wise feature responses by explicitly modeling interdependencies between different neuron units. We also introduce a non-linear face reconstruction representation as a guidance of latent space to obtain more accurate deformation, which helps solve the geometry-related deformation and is good for generalization across subjects. Huber and HSIC (Hilbert-Schmidt Independence Criterion) constraints are adopted to promote the robustness of our model and to better exploit the non-linear and high-order correlations. Experimental results on the public dataset and real scanned dataset validate the superiority of our proposed GDPnet compared with state-of-the-art model. The code is available for research purposes at http://cic.tju.edu.cn/faculty/likun/projects/GDPnet . |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1077-2626 1941-0506 1941-0506 |
| DOI: | 10.1109/TVCG.2021.3107669 |