Polyharmonic capacity and Wiener test of higher order
In the present paper we establish the Wiener test for boundary regularity of the solutions to the polyharmonic operator. We introduce a new notion of polyharmonic capacity and demonstrate necessary and sufficient conditions on the capacity of the domain responsible for the regularity of a polyharmon...
Saved in:
| Published in: | Inventiones mathematicae Vol. 211; no. 2; pp. 779 - 853 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2018
|
| Subjects: | |
| ISSN: | 0020-9910, 1432-1297, 1432-1297 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In the present paper we establish the Wiener test for boundary regularity of the solutions to the polyharmonic operator. We introduce a new notion of polyharmonic capacity and demonstrate necessary and sufficient conditions on the capacity of the domain responsible for the regularity of a polyharmonic function near a boundary point. In the case of the Laplacian the test for regularity of a boundary point is the celebrated Wiener criterion of 1924. It was extended to the biharmonic case in dimension three by Mayboroda and Maz’ya (Invent Math 175(2):287–334,
2009
). As a preliminary stage of this work, in Mayboroda and Maz’ya (Invent Math 196(1):168,
2014
) we demonstrated boundedness of the appropriate derivatives of solutions to the polyharmonic problem in arbitrary domains, accompanied by sharp estimates on the Green function. The present work pioneers a new version of capacity and establishes the Wiener test in the full generality of the polyharmonic equation of arbitrary order. |
|---|---|
| AbstractList | In the present paper we establish the Wiener test for boundary regularity of the solutions to the polyharmonic operator. We introduce a new notion of polyharmonic capacity and demonstrate necessary and sufficient conditions on the capacity of the domain responsible for the regularity of a polyharmonic function near a boundary point. In the case of the Laplacian the test for regularity of a boundary point is the celebrated Wiener criterion of 1924. It was extended to the biharmonic case in dimension three by Mayboroda and Maz’ya (Invent Math 175(2):287–334,
2009
). As a preliminary stage of this work, in Mayboroda and Maz’ya (Invent Math 196(1):168,
2014
) we demonstrated boundedness of the appropriate derivatives of solutions to the polyharmonic problem in arbitrary domains, accompanied by sharp estimates on the Green function. The present work pioneers a new version of capacity and establishes the Wiener test in the full generality of the polyharmonic equation of arbitrary order. In the present paper we establish the Wiener test for boundary regularity of the solutions to the polyharmonic operator. We introduce a new notion of polyharmonic capacity and demonstrate necessary and sufficient conditions on the capacity of the domain responsible for the regularity of a polyharmonic function near a boundary point. In the case of the Laplacian the test for regularity of a boundary point is the celebrated Wiener criterion of 1924. It was extended to the biharmonic case in dimension three by Mayboroda and Mazya (Invent Math 175(2):287-334, 2009). As a preliminary stage of this work, in Mayboroda and Mazya (Invent Math 196(1):168, 2014) we demonstrated boundedness of the appropriate derivatives of solutions to the polyharmonic problem in arbitrary domains, accompanied by sharp estimates on the Green function. The present work pioneers a new version of capacity and establishes the Wiener test in the full generality of the polyharmonic equation of arbitrary order. |
| Author | Mayboroda, Svitlana Maz’ya, Vladimir |
| Author_xml | – sequence: 1 givenname: Svitlana surname: Mayboroda fullname: Mayboroda, Svitlana email: svitlana@math.umn.edu organization: School of Mathematics, University of Minnesota – sequence: 2 givenname: Vladimir surname: Maz’ya fullname: Maz’ya, Vladimir organization: Department of Mathematics, Linköping University, RUDN University |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-144873$$DView record from Swedish Publication Index (Linköpings universitet) |
| BookMark | eNp9kM9qAjEQh0OxULV9gN72BdJOsusmOYr9C0J7kPYYsklWI2siyUrZt29E6aEHT8Mwv29m-CZo5IO3CN0TeCAA7DEBUEoxEIaBzWo8XKExqUqKCRVshMZ5DFgIAjdoktIWIA8ZHaPZZ-iGjYq74J0utNor7fqhUN4U3856G4vepr4IbbFx601uQzQ23qLrVnXJ3p3rFK1enleLN7z8eH1fzJdYl7TusWa6ZaoW0AjBeQMtbQiISkNtyooba7ihxFIzU40GU2vBbAOi1VzxhomqnCJ8Wpt-7P7QyH10OxUHGZSTT-5rLkNcy84dJKkqzsqcJ6e8jiGlaNs_goA8apInTTJrkkdNcsgM-8dkAap3wfdRue4iSc_f5St-baPchkP02ccF6BfzbX9e |
| CitedBy_id | crossref_primary_10_1093_imrn_rnac079 crossref_primary_10_1007_s00209_023_03265_y crossref_primary_10_1016_j_jde_2019_11_051 crossref_primary_10_1016_j_nonrwa_2025_104465 |
| Cites_doi | 10.1090/S0273-0979-05-01058-X 10.1007/BF02392541 10.1215/S0012-7094-89-05906-1 10.1007/s00208-006-0022-x 10.1007/s00222-008-0150-x 10.1007/BF00276841 10.1353/ajm.2002.0012 10.1090/pspum/060/1460283 10.1007/BF00130916 10.1215/S0012-7094-02-11533-6 10.1007/BF02922138 10.1007/BF00136815 10.5802/aif.883 10.5802/aif.1062 10.2307/2369620 10.1007/s00222-013-0464-1 10.1007/BF02565827 10.1090/mmono/139 10.2307/2374885 10.1007/BF00249583 10.1002/sapm192433127 10.1007/978-3-642-15564-2 10.1007/978-3-7643-9898-9_12 10.1007/978-3-662-03282-4 10.1002/cpa.3160120405 10.1007/BF02345828 10.1090/S0002-9904-1960-10402-8 10.1115/1.1521166 10.1007/BF02412919 10.1090/surv/051 10.1215/S0012-7094-02-11111-9 10.1090/psapm/052/1440907 10.1007/BF02392793 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany 2017 |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany 2017 |
| DBID | AAYXX CITATION ADTPV AOWAS DG8 |
| DOI | 10.1007/s00222-017-0756-y |
| DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Linköpings universitet |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Mathematics |
| EISSN | 1432-1297 |
| EndPage | 853 |
| ExternalDocumentID | oai_DiVA_org_liu_144873 10_1007_s00222_017_0756_y |
| GroupedDBID | --Z -52 -5D -5G -BR -DZ -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM LO0 M0N M4Y M7S MA- MQGED MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P62 P9R PF- PKN PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I REI RHV RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 Y6R YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZKB ZMTXR ZWQNP ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AETEA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB ADTPV AOWAS DG8 |
| ID | FETCH-LOGICAL-c326t-c7cf7a690b9988b0f2b1094c06d348ded8d21e2d5abc0d6c97eb09fc8a8b7943 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000422955900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-9910 1432-1297 |
| IngestDate | Tue Nov 04 16:41:07 EST 2025 Sat Nov 29 01:50:10 EST 2025 Tue Nov 18 21:45:01 EST 2025 Fri Feb 21 02:44:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c326t-c7cf7a690b9988b0f2b1094c06d348ded8d21e2d5abc0d6c97eb09fc8a8b7943 |
| PageCount | 75 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_liu_144873 crossref_primary_10_1007_s00222_017_0756_y crossref_citationtrail_10_1007_s00222_017_0756_y springer_journals_10_1007_s00222_017_0756_y |
| PublicationCentury | 2000 |
| PublicationDate | 2018-02-01 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationTitle | Inventiones mathematicae |
| PublicationTitleAbbrev | Invent. math |
| PublicationYear | 2018 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | Chang, S.-Y. A., Yang, P. C.: Non-linear partial differential equations in conformal geometry. In: Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), 189–207, Higher Ed. Press, Beijing (2002) EvansLCGariepyRFWiener’s criterion for the heat equationArch. Ration. Mech. Anal.198278429331465354410.1007/BF002495830508.35038 Maz’yaVThe Wiener test for higher order elliptic equationsDuke Math. J.20021153479512194041010.1215/S0012-7094-02-11533-61129.35346 PipherJVerchotaGA maximum principle for biharmonic functions in Lipschitz and C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} domainsComment. Math. Helv.1993683385414123676110.1007/BF025658270794.31005 Maz’jaVThe continuity at a boundary point of the solutions of quasi-linear elliptic equationsVestn. Leningr. Univ.197025134255274948(Russian) MayborodaSMaz’yaVBoundedness of the gradient of a solution and Wiener test of order one for the biharmonic equationInvent. Math.20091752287334247010910.1007/s00222-008-0150-x1166.35014 PipherJVerchotaGMaximum principles for the polyharmonic equation on Lipschitz domainsPotential Anal.199546615636136138010.1007/BF023458280844.35013 MirandaCTeorema del massimo modulo e teorema di esistenza e di unicità per il problema di Dirichlet relativo alle equazioni ellittiche in due variabiliAnn. Mat. Pura Appl. (4)19584626531112461510.1007/BF024129190093.29403 Mayboroda, S., Maz’ya, V.: Pointwise estimates for the polyharmonic Green function in general domains. In: Cialdea, A., (ed.) et al. Analysis, Partial Differential Equations and Applications. The Vladimir Maz’ya anniversary volume. Selected papers of the international workshop, Rome, Italy, June 30–July 3, 2008. Basel: BirkhŁuser. Operator Theory: Advances and Applications 193, pp. 143–158 (2009) ZarembaSCSur le principe du minimum1909CracovieBull. Acad. Sci40.0451.01 Sedrakyan, T., Glazman, L., Kamenev, A.: Absence of Bose condensation in certain frustrated lattices. arXiv:1303.7272 (2014) AdamsDHedbergLFunction Spaces and Potential Theory1996BerlinSpringer0834.46021 MirandaCFormule di maggiorazione e teorema di esistenza per le funzioni biarmoniche de due variabiliGiorn. Mat. Battagl. (4)194827897118300580037.07103 TrudingerNWangX-JOn the weak continuity of elliptic operators and applications to potential theory (English summary)Am. J. Math.2002124236941010.1353/ajm.2002.00121067.35023 LittmanWStampacchiaGWeinbergerHFRegular points for elliptic equations with discontinuous coefficientsAnn. Scuola Norm. Sup. Pisa (3)19631743771610190116.30302 AgmonSDouglisANirenbergLEstimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. ICommun. Pure Appl. Math.19591262372712530710.1002/cpa.31601204050093.10401 Maz’ya, V.: Unsolved problems connected with the Wiener criterion. In: The Legacy of Norbert Wiener: A Centennial Symposium (Cambridge, MA, 1994), 199–208, Proc. Sympos. Pure Math., 60, Am. Math. Soc., Providence, RI (1997) AgmonSMaximum theorems for solutions of higher order elliptic equationsBull. Am. Math. Soc.196066778012461810.1090/S0002-9904-1960-10402-80091.27301 KozlovVMaz’yaVRossmannJSpectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations2001ProvidenceAmerican Mathematical Society0965.35003 AntmanSSNonlinear Problems of Elasticity20052New YorkSpringer1098.74001 Maz’yaVRossmannJOn the Agmon-Miranda maximum principle for solutions of strongly elliptic equations in domains of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^n$$\end{document} with conical pointsAnn. Glob. Anal. Geom.1992102125150117591510.1007/BF001309160794.35043 MalýJZiemerWPFine Regularity of Solutions of Elliptic Partial Differential Equations1997ProvidenceAmerican Mathematical Society0882.35001 LabutinDPotential estimates for a class of fully nonlinear elliptic equationsDuke Math. J.20021111149187644010.1215/S0012-7094-02-11111-91100.35036 Lebesgue, H.: Sur le cas d’impossibilité du problème de Dirichlet ordinaire, C.R. des Séances de la Société Mathématique de France, 17 (1913) NečasJLes méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs1967Paris, PragueAcademia, Éditeurs ChangS-YAConformal invariants and partial differential equationsBull. Am. Math. Soc. (N.S)2005423365393214908810.1090/S0273-0979-05-01058-X1087.53019(electronic) Skrypnik, I. V.: Methods for analysis of nonlinear elliptic boundary value problems. Translated from the 1990 Russian original by Dan D. Pascali. Translations of Mathematical Monographs, 139. American Mathematical Society, Providence, RI (1994) Adams, D.: Potential and capacity before and after Wiener. In: Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, MI, 1994), pp. 63–83, Proc. Sympos. Appl. Math., 52, Amer. Math. Soc., Providence, RI (1997) KilpeläinenTMalýJThe Wiener test and potential estimates for quasilinear elliptic equationsActa Math.19941721137161126400010.1007/BF023927930820.35063 LindqvistPMartioOTwo theorems of N. Wiener for solutions of quasilinear elliptic equationsActa Math.19851553–415317180641310.1007/BF023925410607.35042 Maz’ya, V.: Sobolev spaces with applications to elliptic partial differential equations. Second, revised and augmented edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 342. Springer, Heidelberg (2011) WienerNThe Dirichlet problemJ. Math. Phys.1924312714610.1002/sapm19243312751.0361.01 FabesEGarofaloNLanconelliEWiener’s criterion for divergence form parabolic operators with C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-Dini continuous coefficientsDuke Math. J.1989591191232101688410.1215/S0012-7094-89-05906-10705.35057 Maz’ya, V.: Prostranstva S. L. Soboleva. (Russian) [Sobolev spaces] Leningrad. Univ., Leningrad p. 416 (1985) Maz’yaVRossmannJOn the Agmon-Miranda maximum principle for solutions of elliptic equations in polyhedral and polygonal domainsAnn. Glob. Anal. Geom.199193253303114340610.1007/BF001368150753.35013 DahlbergBKenigCVerchotaGThe Dirichlet problem for the biharmonic equation in a Lipschitz domain. (French summary)Ann. Inst. Fourier (Grenoble)198636310913586566310.5802/aif.10620589.35040 FabesEJerisonDKenigCThe Wiener test for degenerate elliptic equationsAnn. Inst. Fourier (Grenoble)198232315118268802410.5802/aif.8830488.35034 MeleshkoVVSelected topics in the history of the two-dimensional biharmonic problemAppl. Mech. Rev.200356338510.1115/1.1521166 ShenZNecessary and sufficient conditions for the solvability of the Lp Dirichlet problem on Lipschitz domainsMath. Ann.20063363697725224976510.1007/s00208-006-0022-x1194.35131 Maz’ya, V., Nazarov, S. A., Plamenevskiĭ, B. A.: Singularities of solutions of the Dirichlet problem in the exterior of a thin cone, Mat. Sb. (N.S.) 122 (164), vol. 4, pp. 435–457 (1983) English translation: Math. USSR-Sb. 50 (1985), no. 2, 415–437 Dal MasoGMoscoUWiener criteria and energy decay for relaxed Dirichlet problemsArch. Ration. Mech. Anal.198695434538785378310.1007/BF002768410634.35033 PipherJVerchotaGThe Dirichlet problem in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} for the biharmonic equation on Lipschitz domainsAm. J. Math.19921145923972118352710.2307/23748850768.31006 CiarletPhMathematical Elasticity. Vol II. Theory of Plates1997AmsterdamNorth-Holland Publishing Co.0888.73001 MayborodaSMaz’yaVRegularity of solutions to the polyharmonic equation in general domainsInvent. Math.20141961168317957210.1007/s00222-013-0464-11292.35114 AdamsDRLp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} potential theory techniques and nonlinear PDE, Potential theory (Nagoya, 1990), 1–151992Berlinde Gruyter PoincaréHSur les équations aux derivées partielle de la physique mathématiqueAm. J. Math.18901221129910.2307/236962022.0977.03 ShenZOn estimates of biharmonic functions on Lipschitz and convex domainsJ. Geom. Anal.2006164721734227195110.1007/BF029221381174.31306 H Poincaré (756_CR40) 1890; 12 SC Zaremba (756_CR47) 1909 S Mayboroda (756_CR24) 2014; 196 J Pipher (756_CR38) 1993; 68 V Maz’ja (756_CR25) 1970; 25 S Agmon (756_CR5) 1959; 12 SS Antman (756_CR6) 2005 C Miranda (756_CR35) 1958; 46 J Pipher (756_CR37) 1992; 114 756_CR8 W Littman (756_CR20) 1963; 17 T Kilpeläinen (756_CR15) 1994; 172 VV Meleshko (756_CR33) 2003; 56 G Maso Dal (756_CR11) 1986; 95 N Trudinger (756_CR45) 2002; 124 Z Shen (756_CR43) 2006; 336 B Dahlberg (756_CR10) 1986; 36 756_CR18 756_CR30 P Lindqvist (756_CR19) 1985; 155 E Fabes (756_CR14) 1982; 32 V Maz’ya (756_CR29) 2002; 115 E Fabes (756_CR13) 1989; 59 S Mayboroda (756_CR22) 2009; 175 V Maz’ya (756_CR32) 1992; 10 S Agmon (756_CR4) 1960; 66 D Labutin (756_CR17) 2002; 111 J Malý (756_CR21) 1997 S-YA Chang (756_CR7) 2005; 42 V Kozlov (756_CR16) 2001 D Adams (756_CR3) 1996 DR Adams (756_CR1) 1992 756_CR2 LC Evans (756_CR12) 1982; 78 756_CR27 J Nečas (756_CR36) 1967 756_CR26 J Pipher (756_CR39) 1995; 4 C Miranda (756_CR34) 1948; 2 756_CR28 756_CR41 N Wiener (756_CR46) 1924; 3 756_CR23 756_CR44 Ph Ciarlet (756_CR9) 1997 V Maz’ya (756_CR31) 1991; 9 Z Shen (756_CR42) 2006; 16 |
| References_xml | – reference: WienerNThe Dirichlet problemJ. Math. Phys.1924312714610.1002/sapm19243312751.0361.01 – reference: EvansLCGariepyRFWiener’s criterion for the heat equationArch. Ration. Mech. Anal.198278429331465354410.1007/BF002495830508.35038 – reference: PipherJVerchotaGA maximum principle for biharmonic functions in Lipschitz and C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} domainsComment. Math. Helv.1993683385414123676110.1007/BF025658270794.31005 – reference: AdamsDHedbergLFunction Spaces and Potential Theory1996BerlinSpringer0834.46021 – reference: MirandaCFormule di maggiorazione e teorema di esistenza per le funzioni biarmoniche de due variabiliGiorn. Mat. Battagl. (4)194827897118300580037.07103 – reference: ShenZNecessary and sufficient conditions for the solvability of the Lp Dirichlet problem on Lipschitz domainsMath. Ann.20063363697725224976510.1007/s00208-006-0022-x1194.35131 – reference: Maz’yaVRossmannJOn the Agmon-Miranda maximum principle for solutions of elliptic equations in polyhedral and polygonal domainsAnn. Glob. Anal. Geom.199193253303114340610.1007/BF001368150753.35013 – reference: ZarembaSCSur le principe du minimum1909CracovieBull. Acad. Sci40.0451.01 – reference: MayborodaSMaz’yaVBoundedness of the gradient of a solution and Wiener test of order one for the biharmonic equationInvent. Math.20091752287334247010910.1007/s00222-008-0150-x1166.35014 – reference: Maz’ya, V., Nazarov, S. A., Plamenevskiĭ, B. A.: Singularities of solutions of the Dirichlet problem in the exterior of a thin cone, Mat. Sb. (N.S.) 122 (164), vol. 4, pp. 435–457 (1983) English translation: Math. USSR-Sb. 50 (1985), no. 2, 415–437 – reference: Skrypnik, I. V.: Methods for analysis of nonlinear elliptic boundary value problems. Translated from the 1990 Russian original by Dan D. Pascali. Translations of Mathematical Monographs, 139. American Mathematical Society, Providence, RI (1994) – reference: AntmanSSNonlinear Problems of Elasticity20052New YorkSpringer1098.74001 – reference: PipherJVerchotaGThe Dirichlet problem in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} for the biharmonic equation on Lipschitz domainsAm. J. Math.19921145923972118352710.2307/23748850768.31006 – reference: Maz’ya, V.: Sobolev spaces with applications to elliptic partial differential equations. Second, revised and augmented edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 342. Springer, Heidelberg (2011) – reference: MalýJZiemerWPFine Regularity of Solutions of Elliptic Partial Differential Equations1997ProvidenceAmerican Mathematical Society0882.35001 – reference: MirandaCTeorema del massimo modulo e teorema di esistenza e di unicità per il problema di Dirichlet relativo alle equazioni ellittiche in due variabiliAnn. Mat. Pura Appl. (4)19584626531112461510.1007/BF024129190093.29403 – reference: NečasJLes méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs1967Paris, PragueAcademia, Éditeurs – reference: ChangS-YAConformal invariants and partial differential equationsBull. Am. Math. Soc. (N.S)2005423365393214908810.1090/S0273-0979-05-01058-X1087.53019(electronic) – reference: Maz’jaVThe continuity at a boundary point of the solutions of quasi-linear elliptic equationsVestn. Leningr. Univ.197025134255274948(Russian) – reference: FabesEGarofaloNLanconelliEWiener’s criterion for divergence form parabolic operators with C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-Dini continuous coefficientsDuke Math. J.1989591191232101688410.1215/S0012-7094-89-05906-10705.35057 – reference: MayborodaSMaz’yaVRegularity of solutions to the polyharmonic equation in general domainsInvent. Math.20141961168317957210.1007/s00222-013-0464-11292.35114 – reference: Chang, S.-Y. A., Yang, P. C.: Non-linear partial differential equations in conformal geometry. In: Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), 189–207, Higher Ed. Press, Beijing (2002) – reference: Dal MasoGMoscoUWiener criteria and energy decay for relaxed Dirichlet problemsArch. Ration. Mech. Anal.198695434538785378310.1007/BF002768410634.35033 – reference: Maz’yaVThe Wiener test for higher order elliptic equationsDuke Math. J.20021153479512194041010.1215/S0012-7094-02-11533-61129.35346 – reference: Maz’yaVRossmannJOn the Agmon-Miranda maximum principle for solutions of strongly elliptic equations in domains of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^n$$\end{document} with conical pointsAnn. Glob. Anal. Geom.1992102125150117591510.1007/BF001309160794.35043 – reference: AgmonSDouglisANirenbergLEstimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. ICommun. Pure Appl. Math.19591262372712530710.1002/cpa.31601204050093.10401 – reference: CiarletPhMathematical Elasticity. Vol II. Theory of Plates1997AmsterdamNorth-Holland Publishing Co.0888.73001 – reference: KilpeläinenTMalýJThe Wiener test and potential estimates for quasilinear elliptic equationsActa Math.19941721137161126400010.1007/BF023927930820.35063 – reference: AdamsDRLp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} potential theory techniques and nonlinear PDE, Potential theory (Nagoya, 1990), 1–151992Berlinde Gruyter – reference: MeleshkoVVSelected topics in the history of the two-dimensional biharmonic problemAppl. Mech. Rev.200356338510.1115/1.1521166 – reference: Sedrakyan, T., Glazman, L., Kamenev, A.: Absence of Bose condensation in certain frustrated lattices. arXiv:1303.7272 (2014) – reference: DahlbergBKenigCVerchotaGThe Dirichlet problem for the biharmonic equation in a Lipschitz domain. (French summary)Ann. Inst. Fourier (Grenoble)198636310913586566310.5802/aif.10620589.35040 – reference: LabutinDPotential estimates for a class of fully nonlinear elliptic equationsDuke Math. J.20021111149187644010.1215/S0012-7094-02-11111-91100.35036 – reference: Maz’ya, V.: Unsolved problems connected with the Wiener criterion. In: The Legacy of Norbert Wiener: A Centennial Symposium (Cambridge, MA, 1994), 199–208, Proc. Sympos. Pure Math., 60, Am. Math. Soc., Providence, RI (1997) – reference: KozlovVMaz’yaVRossmannJSpectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations2001ProvidenceAmerican Mathematical Society0965.35003 – reference: Mayboroda, S., Maz’ya, V.: Pointwise estimates for the polyharmonic Green function in general domains. In: Cialdea, A., (ed.) et al. Analysis, Partial Differential Equations and Applications. The Vladimir Maz’ya anniversary volume. Selected papers of the international workshop, Rome, Italy, June 30–July 3, 2008. Basel: BirkhŁuser. Operator Theory: Advances and Applications 193, pp. 143–158 (2009) – reference: TrudingerNWangX-JOn the weak continuity of elliptic operators and applications to potential theory (English summary)Am. J. Math.2002124236941010.1353/ajm.2002.00121067.35023 – reference: PipherJVerchotaGMaximum principles for the polyharmonic equation on Lipschitz domainsPotential Anal.199546615636136138010.1007/BF023458280844.35013 – reference: Lebesgue, H.: Sur le cas d’impossibilité du problème de Dirichlet ordinaire, C.R. des Séances de la Société Mathématique de France, 17 (1913) – reference: Maz’ya, V.: Prostranstva S. L. Soboleva. (Russian) [Sobolev spaces] Leningrad. Univ., Leningrad p. 416 (1985) – reference: ShenZOn estimates of biharmonic functions on Lipschitz and convex domainsJ. Geom. Anal.2006164721734227195110.1007/BF029221381174.31306 – reference: LittmanWStampacchiaGWeinbergerHFRegular points for elliptic equations with discontinuous coefficientsAnn. Scuola Norm. Sup. Pisa (3)19631743771610190116.30302 – reference: Adams, D.: Potential and capacity before and after Wiener. In: Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, MI, 1994), pp. 63–83, Proc. Sympos. Appl. Math., 52, Amer. Math. Soc., Providence, RI (1997) – reference: PoincaréHSur les équations aux derivées partielle de la physique mathématiqueAm. J. Math.18901221129910.2307/236962022.0977.03 – reference: FabesEJerisonDKenigCThe Wiener test for degenerate elliptic equationsAnn. Inst. Fourier (Grenoble)198232315118268802410.5802/aif.8830488.35034 – reference: LindqvistPMartioOTwo theorems of N. Wiener for solutions of quasilinear elliptic equationsActa Math.19851553–415317180641310.1007/BF023925410607.35042 – reference: AgmonSMaximum theorems for solutions of higher order elliptic equationsBull. Am. Math. Soc.196066778012461810.1090/S0002-9904-1960-10402-80091.27301 – volume: 42 start-page: 365 issue: 3 year: 2005 ident: 756_CR7 publication-title: Bull. Am. Math. Soc. (N.S) doi: 10.1090/S0273-0979-05-01058-X – volume: 155 start-page: 153 issue: 3–4 year: 1985 ident: 756_CR19 publication-title: Acta Math. doi: 10.1007/BF02392541 – volume: 25 start-page: 42 issue: 13 year: 1970 ident: 756_CR25 publication-title: Vestn. Leningr. Univ. – ident: 756_CR8 – volume-title: Sur le principe du minimum year: 1909 ident: 756_CR47 – volume: 59 start-page: 191 issue: 1 year: 1989 ident: 756_CR13 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-89-05906-1 – volume: 336 start-page: 697 issue: 3 year: 2006 ident: 756_CR43 publication-title: Math. Ann. doi: 10.1007/s00208-006-0022-x – volume: 175 start-page: 287 issue: 2 year: 2009 ident: 756_CR22 publication-title: Invent. Math. doi: 10.1007/s00222-008-0150-x – ident: 756_CR30 – volume: 95 start-page: 345 issue: 4 year: 1986 ident: 756_CR11 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00276841 – volume: 124 start-page: 369 issue: 2 year: 2002 ident: 756_CR45 publication-title: Am. J. Math. doi: 10.1353/ajm.2002.0012 – ident: 756_CR28 doi: 10.1090/pspum/060/1460283 – volume: 10 start-page: 125 issue: 2 year: 1992 ident: 756_CR32 publication-title: Ann. Glob. Anal. Geom. doi: 10.1007/BF00130916 – volume: 115 start-page: 479 issue: 3 year: 2002 ident: 756_CR29 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-02-11533-6 – volume: 16 start-page: 721 issue: 4 year: 2006 ident: 756_CR42 publication-title: J. Geom. Anal. doi: 10.1007/BF02922138 – volume: 9 start-page: 253 issue: 3 year: 1991 ident: 756_CR31 publication-title: Ann. Glob. Anal. Geom. doi: 10.1007/BF00136815 – volume: 32 start-page: 151 issue: 3 year: 1982 ident: 756_CR14 publication-title: Ann. Inst. Fourier (Grenoble) doi: 10.5802/aif.883 – ident: 756_CR41 – volume: 36 start-page: 109 issue: 3 year: 1986 ident: 756_CR10 publication-title: Ann. Inst. Fourier (Grenoble) doi: 10.5802/aif.1062 – volume: 12 start-page: 211 year: 1890 ident: 756_CR40 publication-title: Am. J. Math. doi: 10.2307/2369620 – ident: 756_CR26 – volume: 196 start-page: 1 issue: 1 year: 2014 ident: 756_CR24 publication-title: Invent. Math. doi: 10.1007/s00222-013-0464-1 – volume-title: Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs year: 1967 ident: 756_CR36 – volume-title: Mathematical Elasticity. Vol II. Theory of Plates year: 1997 ident: 756_CR9 – volume-title: Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations year: 2001 ident: 756_CR16 – volume: 68 start-page: 385 issue: 3 year: 1993 ident: 756_CR38 publication-title: Comment. Math. Helv. doi: 10.1007/BF02565827 – ident: 756_CR44 doi: 10.1090/mmono/139 – volume: 114 start-page: 923 issue: 5 year: 1992 ident: 756_CR37 publication-title: Am. J. Math. doi: 10.2307/2374885 – volume: 78 start-page: 293 issue: 4 year: 1982 ident: 756_CR12 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00249583 – volume: 2 start-page: 97 issue: 78 year: 1948 ident: 756_CR34 publication-title: Giorn. Mat. Battagl. (4) – volume: 3 start-page: 127 year: 1924 ident: 756_CR46 publication-title: J. Math. Phys. doi: 10.1002/sapm192433127 – ident: 756_CR18 – ident: 756_CR27 doi: 10.1007/978-3-642-15564-2 – ident: 756_CR23 doi: 10.1007/978-3-7643-9898-9_12 – volume-title: $$L^p$$ L p year: 1992 ident: 756_CR1 – volume-title: Function Spaces and Potential Theory year: 1996 ident: 756_CR3 doi: 10.1007/978-3-662-03282-4 – volume: 12 start-page: 623 year: 1959 ident: 756_CR5 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160120405 – volume-title: Nonlinear Problems of Elasticity year: 2005 ident: 756_CR6 – volume: 4 start-page: 615 issue: 6 year: 1995 ident: 756_CR39 publication-title: Potential Anal. doi: 10.1007/BF02345828 – volume: 66 start-page: 77 year: 1960 ident: 756_CR4 publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1960-10402-8 – volume: 56 start-page: 33 year: 2003 ident: 756_CR33 publication-title: Appl. Mech. Rev. doi: 10.1115/1.1521166 – volume: 46 start-page: 265 year: 1958 ident: 756_CR35 publication-title: Ann. Mat. Pura Appl. (4) doi: 10.1007/BF02412919 – volume-title: Fine Regularity of Solutions of Elliptic Partial Differential Equations year: 1997 ident: 756_CR21 doi: 10.1090/surv/051 – volume: 111 start-page: 1 issue: 1 year: 2002 ident: 756_CR17 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-02-11111-9 – ident: 756_CR2 doi: 10.1090/psapm/052/1440907 – volume: 172 start-page: 137 issue: 1 year: 1994 ident: 756_CR15 publication-title: Acta Math. doi: 10.1007/BF02392793 – volume: 17 start-page: 43 year: 1963 ident: 756_CR20 publication-title: Ann. Scuola Norm. Sup. Pisa (3) |
| SSID | ssj0014372 |
| Score | 2.242919 |
| Snippet | In the present paper we establish the Wiener test for boundary regularity of the solutions to the polyharmonic operator. We introduce a new notion of... |
| SourceID | swepub crossref springer |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 779 |
| SubjectTerms | Mathematics Mathematics and Statistics |
| Title | Polyharmonic capacity and Wiener test of higher order |
| URI | https://link.springer.com/article/10.1007/s00222-017-0756-y https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-144873 |
| Volume | 211 |
| WOSCitedRecordID | wos000422955900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-1297 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014372 issn: 0020-9910 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCDj1axvtiD9KAE0ry6ORa1eLEULbW3ZV_RQE2kSYX8e2c3D1CkoLccNpMw2Z2ZLzPzDUJX4PNV6DEFR5zbltcXzCLMYXClh4tEvusrZoZNDMZjMp-Hk6qPO6ur3euUpLHUTbOb6du0tFUFNxdYxSbaAm9H9LyGp-dZkzrQiaiyrsO2IPhpUpm_ifjujOrH_mANNZ5mtP-vdzxAe1VgiYflTjhEGyppo84wAVD9XuAeNqWe5h96G-0-NmStWQf5k3RRaAZrzZKLBXhPAaE5ZonEL7FmpcYQjuY4jfCbKQrBhq7zCE1H99PbB6uapmAJCNFyS2gCIgZgmAPCItyOHN4HbCfsQLoekUoS6fSVI33GhS0DEQ4Ut8NIEEa4ZpE7Rq0kTdQJwtINwDBIx2e-8hxPcqkiz_W4wyPAP4R0kV1rlYqKaVwPvFjQhiPZ6ImCnqjWEy266Lq55aOk2Vi3-KbWPq1OXLZuda_8mo1gzah9F8-GNF2-0kW8AvgDsM09_ZPYM7QDsRMpC7jPUStfrtQF2hafeZwtL82W_AKGttuU |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB68QH3wqIq3-yB9UAJprm4fiwcVtYiW2rdlr2ihptJGIf_e2c0BihT0LQ-bSZjszsyXmfkG4BR9vm4FXOMRF64TNCR3KPc4XpnhInHoh5rbYRPNbpcOBq2Hoo97Wla7lylJa6mrZjfbt-kYq4puLnKyeVgM0GEZwvzHp36VOjCJqLyuw3Uw-KlSmb-J-O6Mysf-YA21nuZ6_V_vuAFrRWBJ2vlO2IQ5ndRgq50gqH7LSJ3YUk_7D70Gq_cVWet0C8KH8SgzDNaGJZdI9J4SQ3PCE0Weh4aVmmA4mpJxTF5tUQixdJ3b0Lu-6l10nGKagiMxREsdaQiIOIJhgQiLCjf2RAOxnXQj5QdUaUWV19CeCrmQropkq6mF24ol5VQYFrkdWEjGid4FovwIDYPyQh7qwAuUUDoO_EB4Ikb8Q-keuKVWmSyYxs3AixGrOJKtnhjqiRk9sWwPzqpb3nOajVmLz0vts-LETWetrudfsxJsGLUvh_02G09e2Gj4gfAHYZu__yexJ7Dc6d3fsbub7u0BrGAcRfNi7kNYSCcf-giW5Gc6nE6O7fb8AtqX3ng |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60iujBVxXrMwfxoCxu92X2WNSiqKVgqb2FvFYLdSvtKvTfO8k-QBFBvO0hO4TJY-bLzHwDcIw2X8cB13jEhesETckdyj2OX6a5SBL6oea22cRFp0MHg7hb9DmdltnuZUgyr2kwLE1pdv6mkvOq8M3WcDrmhkWTFzmzeVgITB69geuP_SqMYIJSeY6H66AjVIU1fxLx1TCVU_jGIGqtTnvt3_Ndh9XC4SStfIdswJxON6HeShFsv87ICbEpoPZtfRNWHioS12kdwu54NDPM1oY9l0i0qhJddsJTRZ6Ghq2aoJuakXFCXmyyCLE0nlvQa1_3Lm-cosuCI9F1yxxpiIk4gmSByIsKN_FEEzGfdCPlB1RpRZXX1J4KuZCuimR8oYUbJ5JyKgy73DbU0nGqd4AoP8ILQ3khD3XgBUoonQR-IDyRIC6itAFuqWEmCwZy0whjxCruZKsnhnpiRk9s1oDT6pe3nH7jt8Fn5Uqw4iROfxt9kq9sJdgwbV8N-y02njyz0fAdYRHCOX_3T2KPYKl71Wb3t527PVhG94rmOd77UMsm7_oAFuVHNpxODu1O_QT0Mudc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyharmonic+capacity+and+Wiener+test+of+higher+order&rft.jtitle=Inventiones+mathematicae&rft.au=Mayboroda%2C+Svitlana&rft.au=Mazya%2C+Vladimir&rft.date=2018-02-01&rft.issn=0020-9910&rft.volume=211&rft.issue=2&rft.spage=779&rft_id=info:doi/10.1007%2Fs00222-017-0756-y&rft.externalDocID=oai_DiVA_org_liu_144873 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-9910&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-9910&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-9910&client=summon |