Polyharmonic capacity and Wiener test of higher order

In the present paper we establish the Wiener test for boundary regularity of the solutions to the polyharmonic operator. We introduce a new notion of polyharmonic capacity and demonstrate necessary and sufficient conditions on the capacity of the domain responsible for the regularity of a polyharmon...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Inventiones mathematicae Ročník 211; číslo 2; s. 779 - 853
Hlavní autoři: Mayboroda, Svitlana, Maz’ya, Vladimir
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2018
Témata:
ISSN:0020-9910, 1432-1297, 1432-1297
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the present paper we establish the Wiener test for boundary regularity of the solutions to the polyharmonic operator. We introduce a new notion of polyharmonic capacity and demonstrate necessary and sufficient conditions on the capacity of the domain responsible for the regularity of a polyharmonic function near a boundary point. In the case of the Laplacian the test for regularity of a boundary point is the celebrated Wiener criterion of 1924. It was extended to the biharmonic case in dimension three by Mayboroda and Maz’ya (Invent Math 175(2):287–334, 2009 ). As a preliminary stage of this work, in Mayboroda and Maz’ya (Invent Math 196(1):168, 2014 ) we demonstrated boundedness of the appropriate derivatives of solutions to the polyharmonic problem in arbitrary domains, accompanied by sharp estimates on the Green function. The present work pioneers a new version of capacity and establishes the Wiener test in the full generality of the polyharmonic equation of arbitrary order.
AbstractList In the present paper we establish the Wiener test for boundary regularity of the solutions to the polyharmonic operator. We introduce a new notion of polyharmonic capacity and demonstrate necessary and sufficient conditions on the capacity of the domain responsible for the regularity of a polyharmonic function near a boundary point. In the case of the Laplacian the test for regularity of a boundary point is the celebrated Wiener criterion of 1924. It was extended to the biharmonic case in dimension three by Mayboroda and Maz’ya (Invent Math 175(2):287–334, 2009 ). As a preliminary stage of this work, in Mayboroda and Maz’ya (Invent Math 196(1):168, 2014 ) we demonstrated boundedness of the appropriate derivatives of solutions to the polyharmonic problem in arbitrary domains, accompanied by sharp estimates on the Green function. The present work pioneers a new version of capacity and establishes the Wiener test in the full generality of the polyharmonic equation of arbitrary order.
In the present paper we establish the Wiener test for boundary regularity of the solutions to the polyharmonic operator. We introduce a new notion of polyharmonic capacity and demonstrate necessary and sufficient conditions on the capacity of the domain responsible for the regularity of a polyharmonic function near a boundary point. In the case of the Laplacian the test for regularity of a boundary point is the celebrated Wiener criterion of 1924. It was extended to the biharmonic case in dimension three by Mayboroda and Mazya (Invent Math 175(2):287-334, 2009). As a preliminary stage of this work, in Mayboroda and Mazya (Invent Math 196(1):168, 2014) we demonstrated boundedness of the appropriate derivatives of solutions to the polyharmonic problem in arbitrary domains, accompanied by sharp estimates on the Green function. The present work pioneers a new version of capacity and establishes the Wiener test in the full generality of the polyharmonic equation of arbitrary order.
Author Mayboroda, Svitlana
Maz’ya, Vladimir
Author_xml – sequence: 1
  givenname: Svitlana
  surname: Mayboroda
  fullname: Mayboroda, Svitlana
  email: svitlana@math.umn.edu
  organization: School of Mathematics, University of Minnesota
– sequence: 2
  givenname: Vladimir
  surname: Maz’ya
  fullname: Maz’ya, Vladimir
  organization: Department of Mathematics, Linköping University, RUDN University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-144873$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNp9kM9qAjEQh0OxULV9gN72BdJOsusmOYr9C0J7kPYYsklWI2siyUrZt29E6aEHT8Mwv29m-CZo5IO3CN0TeCAA7DEBUEoxEIaBzWo8XKExqUqKCRVshMZ5DFgIAjdoktIWIA8ZHaPZZ-iGjYq74J0utNor7fqhUN4U3856G4vepr4IbbFx601uQzQ23qLrVnXJ3p3rFK1enleLN7z8eH1fzJdYl7TusWa6ZaoW0AjBeQMtbQiISkNtyooba7ihxFIzU40GU2vBbAOi1VzxhomqnCJ8Wpt-7P7QyH10OxUHGZSTT-5rLkNcy84dJKkqzsqcJ6e8jiGlaNs_goA8apInTTJrkkdNcsgM-8dkAap3wfdRue4iSc_f5St-baPchkP02ccF6BfzbX9e
CitedBy_id crossref_primary_10_1093_imrn_rnac079
crossref_primary_10_1007_s00209_023_03265_y
crossref_primary_10_1016_j_jde_2019_11_051
crossref_primary_10_1016_j_nonrwa_2025_104465
Cites_doi 10.1090/S0273-0979-05-01058-X
10.1007/BF02392541
10.1215/S0012-7094-89-05906-1
10.1007/s00208-006-0022-x
10.1007/s00222-008-0150-x
10.1007/BF00276841
10.1353/ajm.2002.0012
10.1090/pspum/060/1460283
10.1007/BF00130916
10.1215/S0012-7094-02-11533-6
10.1007/BF02922138
10.1007/BF00136815
10.5802/aif.883
10.5802/aif.1062
10.2307/2369620
10.1007/s00222-013-0464-1
10.1007/BF02565827
10.1090/mmono/139
10.2307/2374885
10.1007/BF00249583
10.1002/sapm192433127
10.1007/978-3-642-15564-2
10.1007/978-3-7643-9898-9_12
10.1007/978-3-662-03282-4
10.1002/cpa.3160120405
10.1007/BF02345828
10.1090/S0002-9904-1960-10402-8
10.1115/1.1521166
10.1007/BF02412919
10.1090/surv/051
10.1215/S0012-7094-02-11111-9
10.1090/psapm/052/1440907
10.1007/BF02392793
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany 2017
Copyright_xml – notice: Springer-Verlag GmbH Germany 2017
DBID AAYXX
CITATION
ADTPV
AOWAS
DG8
DOI 10.1007/s00222-017-0756-y
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Linköpings universitet
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Mathematics
EISSN 1432-1297
EndPage 853
ExternalDocumentID oai_DiVA_org_liu_144873
10_1007_s00222_017_0756_y
GroupedDBID --Z
-52
-5D
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
199
1N0
1SB
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
LO0
M0N
M4Y
M7S
MA-
MQGED
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P62
P9R
PF-
PKN
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
Y6R
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZKB
ZMTXR
ZWQNP
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ADTPV
AOWAS
DG8
ID FETCH-LOGICAL-c326t-c7cf7a690b9988b0f2b1094c06d348ded8d21e2d5abc0d6c97eb09fc8a8b7943
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000422955900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-9910
1432-1297
IngestDate Tue Nov 04 16:41:07 EST 2025
Sat Nov 29 01:50:10 EST 2025
Tue Nov 18 21:45:01 EST 2025
Fri Feb 21 02:44:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-c7cf7a690b9988b0f2b1094c06d348ded8d21e2d5abc0d6c97eb09fc8a8b7943
PageCount 75
ParticipantIDs swepub_primary_oai_DiVA_org_liu_144873
crossref_primary_10_1007_s00222_017_0756_y
crossref_citationtrail_10_1007_s00222_017_0756_y
springer_journals_10_1007_s00222_017_0756_y
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Inventiones mathematicae
PublicationTitleAbbrev Invent. math
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Chang, S.-Y. A., Yang, P. C.: Non-linear partial differential equations in conformal geometry. In: Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), 189–207, Higher Ed. Press, Beijing (2002)
EvansLCGariepyRFWiener’s criterion for the heat equationArch. Ration. Mech. Anal.198278429331465354410.1007/BF002495830508.35038
Maz’yaVThe Wiener test for higher order elliptic equationsDuke Math. J.20021153479512194041010.1215/S0012-7094-02-11533-61129.35346
PipherJVerchotaGA maximum principle for biharmonic functions in Lipschitz and C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} domainsComment. Math. Helv.1993683385414123676110.1007/BF025658270794.31005
Maz’jaVThe continuity at a boundary point of the solutions of quasi-linear elliptic equationsVestn. Leningr. Univ.197025134255274948(Russian)
MayborodaSMaz’yaVBoundedness of the gradient of a solution and Wiener test of order one for the biharmonic equationInvent. Math.20091752287334247010910.1007/s00222-008-0150-x1166.35014
PipherJVerchotaGMaximum principles for the polyharmonic equation on Lipschitz domainsPotential Anal.199546615636136138010.1007/BF023458280844.35013
MirandaCTeorema del massimo modulo e teorema di esistenza e di unicità per il problema di Dirichlet relativo alle equazioni ellittiche in due variabiliAnn. Mat. Pura Appl. (4)19584626531112461510.1007/BF024129190093.29403
Mayboroda, S., Maz’ya, V.: Pointwise estimates for the polyharmonic Green function in general domains. In: Cialdea, A., (ed.) et al. Analysis, Partial Differential Equations and Applications. The Vladimir Maz’ya anniversary volume. Selected papers of the international workshop, Rome, Italy, June 30–July 3, 2008. Basel: BirkhŁuser. Operator Theory: Advances and Applications 193, pp. 143–158 (2009)
ZarembaSCSur le principe du minimum1909CracovieBull. Acad. Sci40.0451.01
Sedrakyan, T., Glazman, L., Kamenev, A.: Absence of Bose condensation in certain frustrated lattices. arXiv:1303.7272 (2014)
AdamsDHedbergLFunction Spaces and Potential Theory1996BerlinSpringer0834.46021
MirandaCFormule di maggiorazione e teorema di esistenza per le funzioni biarmoniche de due variabiliGiorn. Mat. Battagl. (4)194827897118300580037.07103
TrudingerNWangX-JOn the weak continuity of elliptic operators and applications to potential theory (English summary)Am. J. Math.2002124236941010.1353/ajm.2002.00121067.35023
LittmanWStampacchiaGWeinbergerHFRegular points for elliptic equations with discontinuous coefficientsAnn. Scuola Norm. Sup. Pisa (3)19631743771610190116.30302
AgmonSDouglisANirenbergLEstimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. ICommun. Pure Appl. Math.19591262372712530710.1002/cpa.31601204050093.10401
Maz’ya, V.: Unsolved problems connected with the Wiener criterion. In: The Legacy of Norbert Wiener: A Centennial Symposium (Cambridge, MA, 1994), 199–208, Proc. Sympos. Pure Math., 60, Am. Math. Soc., Providence, RI (1997)
AgmonSMaximum theorems for solutions of higher order elliptic equationsBull. Am. Math. Soc.196066778012461810.1090/S0002-9904-1960-10402-80091.27301
KozlovVMaz’yaVRossmannJSpectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations2001ProvidenceAmerican Mathematical Society0965.35003
AntmanSSNonlinear Problems of Elasticity20052New YorkSpringer1098.74001
Maz’yaVRossmannJOn the Agmon-Miranda maximum principle for solutions of strongly elliptic equations in domains of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^n$$\end{document} with conical pointsAnn. Glob. Anal. Geom.1992102125150117591510.1007/BF001309160794.35043
MalýJZiemerWPFine Regularity of Solutions of Elliptic Partial Differential Equations1997ProvidenceAmerican Mathematical Society0882.35001
LabutinDPotential estimates for a class of fully nonlinear elliptic equationsDuke Math. J.20021111149187644010.1215/S0012-7094-02-11111-91100.35036
Lebesgue, H.: Sur le cas d’impossibilité du problème de Dirichlet ordinaire, C.R. des Séances de la Société Mathématique de France, 17 (1913)
NečasJLes méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs1967Paris, PragueAcademia, Éditeurs
ChangS-YAConformal invariants and partial differential equationsBull. Am. Math. Soc. (N.S)2005423365393214908810.1090/S0273-0979-05-01058-X1087.53019(electronic)
Skrypnik, I. V.: Methods for analysis of nonlinear elliptic boundary value problems. Translated from the 1990 Russian original by Dan D. Pascali. Translations of Mathematical Monographs, 139. American Mathematical Society, Providence, RI (1994)
Adams, D.: Potential and capacity before and after Wiener. In: Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, MI, 1994), pp. 63–83, Proc. Sympos. Appl. Math., 52, Amer. Math. Soc., Providence, RI (1997)
KilpeläinenTMalýJThe Wiener test and potential estimates for quasilinear elliptic equationsActa Math.19941721137161126400010.1007/BF023927930820.35063
LindqvistPMartioOTwo theorems of N. Wiener for solutions of quasilinear elliptic equationsActa Math.19851553–415317180641310.1007/BF023925410607.35042
Maz’ya, V.: Sobolev spaces with applications to elliptic partial differential equations. Second, revised and augmented edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 342. Springer, Heidelberg (2011)
WienerNThe Dirichlet problemJ. Math. Phys.1924312714610.1002/sapm19243312751.0361.01
FabesEGarofaloNLanconelliEWiener’s criterion for divergence form parabolic operators with C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-Dini continuous coefficientsDuke Math. J.1989591191232101688410.1215/S0012-7094-89-05906-10705.35057
Maz’ya, V.: Prostranstva S. L. Soboleva. (Russian) [Sobolev spaces] Leningrad. Univ., Leningrad p. 416 (1985)
Maz’yaVRossmannJOn the Agmon-Miranda maximum principle for solutions of elliptic equations in polyhedral and polygonal domainsAnn. Glob. Anal. Geom.199193253303114340610.1007/BF001368150753.35013
DahlbergBKenigCVerchotaGThe Dirichlet problem for the biharmonic equation in a Lipschitz domain. (French summary)Ann. Inst. Fourier (Grenoble)198636310913586566310.5802/aif.10620589.35040
FabesEJerisonDKenigCThe Wiener test for degenerate elliptic equationsAnn. Inst. Fourier (Grenoble)198232315118268802410.5802/aif.8830488.35034
MeleshkoVVSelected topics in the history of the two-dimensional biharmonic problemAppl. Mech. Rev.200356338510.1115/1.1521166
ShenZNecessary and sufficient conditions for the solvability of the Lp Dirichlet problem on Lipschitz domainsMath. Ann.20063363697725224976510.1007/s00208-006-0022-x1194.35131
Maz’ya, V., Nazarov, S. A., Plamenevskiĭ, B. A.: Singularities of solutions of the Dirichlet problem in the exterior of a thin cone, Mat. Sb. (N.S.) 122 (164), vol. 4, pp. 435–457 (1983) English translation: Math. USSR-Sb. 50 (1985), no. 2, 415–437
Dal MasoGMoscoUWiener criteria and energy decay for relaxed Dirichlet problemsArch. Ration. Mech. Anal.198695434538785378310.1007/BF002768410634.35033
PipherJVerchotaGThe Dirichlet problem in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} for the biharmonic equation on Lipschitz domainsAm. J. Math.19921145923972118352710.2307/23748850768.31006
CiarletPhMathematical Elasticity. Vol II. Theory of Plates1997AmsterdamNorth-Holland Publishing Co.0888.73001
MayborodaSMaz’yaVRegularity of solutions to the polyharmonic equation in general domainsInvent. Math.20141961168317957210.1007/s00222-013-0464-11292.35114
AdamsDRLp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} potential theory techniques and nonlinear PDE, Potential theory (Nagoya, 1990), 1–151992Berlinde Gruyter
PoincaréHSur les équations aux derivées partielle de la physique mathématiqueAm. J. Math.18901221129910.2307/236962022.0977.03
ShenZOn estimates of biharmonic functions on Lipschitz and convex domainsJ. Geom. Anal.2006164721734227195110.1007/BF029221381174.31306
H Poincaré (756_CR40) 1890; 12
SC Zaremba (756_CR47) 1909
S Mayboroda (756_CR24) 2014; 196
J Pipher (756_CR38) 1993; 68
V Maz’ja (756_CR25) 1970; 25
S Agmon (756_CR5) 1959; 12
SS Antman (756_CR6) 2005
C Miranda (756_CR35) 1958; 46
J Pipher (756_CR37) 1992; 114
756_CR8
W Littman (756_CR20) 1963; 17
T Kilpeläinen (756_CR15) 1994; 172
VV Meleshko (756_CR33) 2003; 56
G Maso Dal (756_CR11) 1986; 95
N Trudinger (756_CR45) 2002; 124
Z Shen (756_CR43) 2006; 336
B Dahlberg (756_CR10) 1986; 36
756_CR18
756_CR30
P Lindqvist (756_CR19) 1985; 155
E Fabes (756_CR14) 1982; 32
V Maz’ya (756_CR29) 2002; 115
E Fabes (756_CR13) 1989; 59
S Mayboroda (756_CR22) 2009; 175
V Maz’ya (756_CR32) 1992; 10
S Agmon (756_CR4) 1960; 66
D Labutin (756_CR17) 2002; 111
J Malý (756_CR21) 1997
S-YA Chang (756_CR7) 2005; 42
V Kozlov (756_CR16) 2001
D Adams (756_CR3) 1996
DR Adams (756_CR1) 1992
756_CR2
LC Evans (756_CR12) 1982; 78
756_CR27
J Nečas (756_CR36) 1967
756_CR26
J Pipher (756_CR39) 1995; 4
C Miranda (756_CR34) 1948; 2
756_CR28
756_CR41
N Wiener (756_CR46) 1924; 3
756_CR23
756_CR44
Ph Ciarlet (756_CR9) 1997
V Maz’ya (756_CR31) 1991; 9
Z Shen (756_CR42) 2006; 16
References_xml – reference: WienerNThe Dirichlet problemJ. Math. Phys.1924312714610.1002/sapm19243312751.0361.01
– reference: EvansLCGariepyRFWiener’s criterion for the heat equationArch. Ration. Mech. Anal.198278429331465354410.1007/BF002495830508.35038
– reference: PipherJVerchotaGA maximum principle for biharmonic functions in Lipschitz and C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} domainsComment. Math. Helv.1993683385414123676110.1007/BF025658270794.31005
– reference: AdamsDHedbergLFunction Spaces and Potential Theory1996BerlinSpringer0834.46021
– reference: MirandaCFormule di maggiorazione e teorema di esistenza per le funzioni biarmoniche de due variabiliGiorn. Mat. Battagl. (4)194827897118300580037.07103
– reference: ShenZNecessary and sufficient conditions for the solvability of the Lp Dirichlet problem on Lipschitz domainsMath. Ann.20063363697725224976510.1007/s00208-006-0022-x1194.35131
– reference: Maz’yaVRossmannJOn the Agmon-Miranda maximum principle for solutions of elliptic equations in polyhedral and polygonal domainsAnn. Glob. Anal. Geom.199193253303114340610.1007/BF001368150753.35013
– reference: ZarembaSCSur le principe du minimum1909CracovieBull. Acad. Sci40.0451.01
– reference: MayborodaSMaz’yaVBoundedness of the gradient of a solution and Wiener test of order one for the biharmonic equationInvent. Math.20091752287334247010910.1007/s00222-008-0150-x1166.35014
– reference: Maz’ya, V., Nazarov, S. A., Plamenevskiĭ, B. A.: Singularities of solutions of the Dirichlet problem in the exterior of a thin cone, Mat. Sb. (N.S.) 122 (164), vol. 4, pp. 435–457 (1983) English translation: Math. USSR-Sb. 50 (1985), no. 2, 415–437
– reference: Skrypnik, I. V.: Methods for analysis of nonlinear elliptic boundary value problems. Translated from the 1990 Russian original by Dan D. Pascali. Translations of Mathematical Monographs, 139. American Mathematical Society, Providence, RI (1994)
– reference: AntmanSSNonlinear Problems of Elasticity20052New YorkSpringer1098.74001
– reference: PipherJVerchotaGThe Dirichlet problem in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} for the biharmonic equation on Lipschitz domainsAm. J. Math.19921145923972118352710.2307/23748850768.31006
– reference: Maz’ya, V.: Sobolev spaces with applications to elliptic partial differential equations. Second, revised and augmented edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 342. Springer, Heidelberg (2011)
– reference: MalýJZiemerWPFine Regularity of Solutions of Elliptic Partial Differential Equations1997ProvidenceAmerican Mathematical Society0882.35001
– reference: MirandaCTeorema del massimo modulo e teorema di esistenza e di unicità per il problema di Dirichlet relativo alle equazioni ellittiche in due variabiliAnn. Mat. Pura Appl. (4)19584626531112461510.1007/BF024129190093.29403
– reference: NečasJLes méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs1967Paris, PragueAcademia, Éditeurs
– reference: ChangS-YAConformal invariants and partial differential equationsBull. Am. Math. Soc. (N.S)2005423365393214908810.1090/S0273-0979-05-01058-X1087.53019(electronic)
– reference: Maz’jaVThe continuity at a boundary point of the solutions of quasi-linear elliptic equationsVestn. Leningr. Univ.197025134255274948(Russian)
– reference: FabesEGarofaloNLanconelliEWiener’s criterion for divergence form parabolic operators with C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-Dini continuous coefficientsDuke Math. J.1989591191232101688410.1215/S0012-7094-89-05906-10705.35057
– reference: MayborodaSMaz’yaVRegularity of solutions to the polyharmonic equation in general domainsInvent. Math.20141961168317957210.1007/s00222-013-0464-11292.35114
– reference: Chang, S.-Y. A., Yang, P. C.: Non-linear partial differential equations in conformal geometry. In: Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), 189–207, Higher Ed. Press, Beijing (2002)
– reference: Dal MasoGMoscoUWiener criteria and energy decay for relaxed Dirichlet problemsArch. Ration. Mech. Anal.198695434538785378310.1007/BF002768410634.35033
– reference: Maz’yaVThe Wiener test for higher order elliptic equationsDuke Math. J.20021153479512194041010.1215/S0012-7094-02-11533-61129.35346
– reference: Maz’yaVRossmannJOn the Agmon-Miranda maximum principle for solutions of strongly elliptic equations in domains of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^n$$\end{document} with conical pointsAnn. Glob. Anal. Geom.1992102125150117591510.1007/BF001309160794.35043
– reference: AgmonSDouglisANirenbergLEstimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. ICommun. Pure Appl. Math.19591262372712530710.1002/cpa.31601204050093.10401
– reference: CiarletPhMathematical Elasticity. Vol II. Theory of Plates1997AmsterdamNorth-Holland Publishing Co.0888.73001
– reference: KilpeläinenTMalýJThe Wiener test and potential estimates for quasilinear elliptic equationsActa Math.19941721137161126400010.1007/BF023927930820.35063
– reference: AdamsDRLp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} potential theory techniques and nonlinear PDE, Potential theory (Nagoya, 1990), 1–151992Berlinde Gruyter
– reference: MeleshkoVVSelected topics in the history of the two-dimensional biharmonic problemAppl. Mech. Rev.200356338510.1115/1.1521166
– reference: Sedrakyan, T., Glazman, L., Kamenev, A.: Absence of Bose condensation in certain frustrated lattices. arXiv:1303.7272 (2014)
– reference: DahlbergBKenigCVerchotaGThe Dirichlet problem for the biharmonic equation in a Lipschitz domain. (French summary)Ann. Inst. Fourier (Grenoble)198636310913586566310.5802/aif.10620589.35040
– reference: LabutinDPotential estimates for a class of fully nonlinear elliptic equationsDuke Math. J.20021111149187644010.1215/S0012-7094-02-11111-91100.35036
– reference: Maz’ya, V.: Unsolved problems connected with the Wiener criterion. In: The Legacy of Norbert Wiener: A Centennial Symposium (Cambridge, MA, 1994), 199–208, Proc. Sympos. Pure Math., 60, Am. Math. Soc., Providence, RI (1997)
– reference: KozlovVMaz’yaVRossmannJSpectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations2001ProvidenceAmerican Mathematical Society0965.35003
– reference: Mayboroda, S., Maz’ya, V.: Pointwise estimates for the polyharmonic Green function in general domains. In: Cialdea, A., (ed.) et al. Analysis, Partial Differential Equations and Applications. The Vladimir Maz’ya anniversary volume. Selected papers of the international workshop, Rome, Italy, June 30–July 3, 2008. Basel: BirkhŁuser. Operator Theory: Advances and Applications 193, pp. 143–158 (2009)
– reference: TrudingerNWangX-JOn the weak continuity of elliptic operators and applications to potential theory (English summary)Am. J. Math.2002124236941010.1353/ajm.2002.00121067.35023
– reference: PipherJVerchotaGMaximum principles for the polyharmonic equation on Lipschitz domainsPotential Anal.199546615636136138010.1007/BF023458280844.35013
– reference: Lebesgue, H.: Sur le cas d’impossibilité du problème de Dirichlet ordinaire, C.R. des Séances de la Société Mathématique de France, 17 (1913)
– reference: Maz’ya, V.: Prostranstva S. L. Soboleva. (Russian) [Sobolev spaces] Leningrad. Univ., Leningrad p. 416 (1985)
– reference: ShenZOn estimates of biharmonic functions on Lipschitz and convex domainsJ. Geom. Anal.2006164721734227195110.1007/BF029221381174.31306
– reference: LittmanWStampacchiaGWeinbergerHFRegular points for elliptic equations with discontinuous coefficientsAnn. Scuola Norm. Sup. Pisa (3)19631743771610190116.30302
– reference: Adams, D.: Potential and capacity before and after Wiener. In: Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, MI, 1994), pp. 63–83, Proc. Sympos. Appl. Math., 52, Amer. Math. Soc., Providence, RI (1997)
– reference: PoincaréHSur les équations aux derivées partielle de la physique mathématiqueAm. J. Math.18901221129910.2307/236962022.0977.03
– reference: FabesEJerisonDKenigCThe Wiener test for degenerate elliptic equationsAnn. Inst. Fourier (Grenoble)198232315118268802410.5802/aif.8830488.35034
– reference: LindqvistPMartioOTwo theorems of N. Wiener for solutions of quasilinear elliptic equationsActa Math.19851553–415317180641310.1007/BF023925410607.35042
– reference: AgmonSMaximum theorems for solutions of higher order elliptic equationsBull. Am. Math. Soc.196066778012461810.1090/S0002-9904-1960-10402-80091.27301
– volume: 42
  start-page: 365
  issue: 3
  year: 2005
  ident: 756_CR7
  publication-title: Bull. Am. Math. Soc. (N.S)
  doi: 10.1090/S0273-0979-05-01058-X
– volume: 155
  start-page: 153
  issue: 3–4
  year: 1985
  ident: 756_CR19
  publication-title: Acta Math.
  doi: 10.1007/BF02392541
– volume: 25
  start-page: 42
  issue: 13
  year: 1970
  ident: 756_CR25
  publication-title: Vestn. Leningr. Univ.
– ident: 756_CR8
– volume-title: Sur le principe du minimum
  year: 1909
  ident: 756_CR47
– volume: 59
  start-page: 191
  issue: 1
  year: 1989
  ident: 756_CR13
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-89-05906-1
– volume: 336
  start-page: 697
  issue: 3
  year: 2006
  ident: 756_CR43
  publication-title: Math. Ann.
  doi: 10.1007/s00208-006-0022-x
– volume: 175
  start-page: 287
  issue: 2
  year: 2009
  ident: 756_CR22
  publication-title: Invent. Math.
  doi: 10.1007/s00222-008-0150-x
– ident: 756_CR30
– volume: 95
  start-page: 345
  issue: 4
  year: 1986
  ident: 756_CR11
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00276841
– volume: 124
  start-page: 369
  issue: 2
  year: 2002
  ident: 756_CR45
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.2002.0012
– ident: 756_CR28
  doi: 10.1090/pspum/060/1460283
– volume: 10
  start-page: 125
  issue: 2
  year: 1992
  ident: 756_CR32
  publication-title: Ann. Glob. Anal. Geom.
  doi: 10.1007/BF00130916
– volume: 115
  start-page: 479
  issue: 3
  year: 2002
  ident: 756_CR29
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-02-11533-6
– volume: 16
  start-page: 721
  issue: 4
  year: 2006
  ident: 756_CR42
  publication-title: J. Geom. Anal.
  doi: 10.1007/BF02922138
– volume: 9
  start-page: 253
  issue: 3
  year: 1991
  ident: 756_CR31
  publication-title: Ann. Glob. Anal. Geom.
  doi: 10.1007/BF00136815
– volume: 32
  start-page: 151
  issue: 3
  year: 1982
  ident: 756_CR14
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.883
– ident: 756_CR41
– volume: 36
  start-page: 109
  issue: 3
  year: 1986
  ident: 756_CR10
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.1062
– volume: 12
  start-page: 211
  year: 1890
  ident: 756_CR40
  publication-title: Am. J. Math.
  doi: 10.2307/2369620
– ident: 756_CR26
– volume: 196
  start-page: 1
  issue: 1
  year: 2014
  ident: 756_CR24
  publication-title: Invent. Math.
  doi: 10.1007/s00222-013-0464-1
– volume-title: Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs
  year: 1967
  ident: 756_CR36
– volume-title: Mathematical Elasticity. Vol II. Theory of Plates
  year: 1997
  ident: 756_CR9
– volume-title: Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations
  year: 2001
  ident: 756_CR16
– volume: 68
  start-page: 385
  issue: 3
  year: 1993
  ident: 756_CR38
  publication-title: Comment. Math. Helv.
  doi: 10.1007/BF02565827
– ident: 756_CR44
  doi: 10.1090/mmono/139
– volume: 114
  start-page: 923
  issue: 5
  year: 1992
  ident: 756_CR37
  publication-title: Am. J. Math.
  doi: 10.2307/2374885
– volume: 78
  start-page: 293
  issue: 4
  year: 1982
  ident: 756_CR12
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00249583
– volume: 2
  start-page: 97
  issue: 78
  year: 1948
  ident: 756_CR34
  publication-title: Giorn. Mat. Battagl. (4)
– volume: 3
  start-page: 127
  year: 1924
  ident: 756_CR46
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm192433127
– ident: 756_CR18
– ident: 756_CR27
  doi: 10.1007/978-3-642-15564-2
– ident: 756_CR23
  doi: 10.1007/978-3-7643-9898-9_12
– volume-title: $$L^p$$ L p
  year: 1992
  ident: 756_CR1
– volume-title: Function Spaces and Potential Theory
  year: 1996
  ident: 756_CR3
  doi: 10.1007/978-3-662-03282-4
– volume: 12
  start-page: 623
  year: 1959
  ident: 756_CR5
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160120405
– volume-title: Nonlinear Problems of Elasticity
  year: 2005
  ident: 756_CR6
– volume: 4
  start-page: 615
  issue: 6
  year: 1995
  ident: 756_CR39
  publication-title: Potential Anal.
  doi: 10.1007/BF02345828
– volume: 66
  start-page: 77
  year: 1960
  ident: 756_CR4
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1960-10402-8
– volume: 56
  start-page: 33
  year: 2003
  ident: 756_CR33
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.1521166
– volume: 46
  start-page: 265
  year: 1958
  ident: 756_CR35
  publication-title: Ann. Mat. Pura Appl. (4)
  doi: 10.1007/BF02412919
– volume-title: Fine Regularity of Solutions of Elliptic Partial Differential Equations
  year: 1997
  ident: 756_CR21
  doi: 10.1090/surv/051
– volume: 111
  start-page: 1
  issue: 1
  year: 2002
  ident: 756_CR17
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-02-11111-9
– ident: 756_CR2
  doi: 10.1090/psapm/052/1440907
– volume: 172
  start-page: 137
  issue: 1
  year: 1994
  ident: 756_CR15
  publication-title: Acta Math.
  doi: 10.1007/BF02392793
– volume: 17
  start-page: 43
  year: 1963
  ident: 756_CR20
  publication-title: Ann. Scuola Norm. Sup. Pisa (3)
SSID ssj0014372
Score 2.242919
Snippet In the present paper we establish the Wiener test for boundary regularity of the solutions to the polyharmonic operator. We introduce a new notion of...
SourceID swepub
crossref
springer
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 779
SubjectTerms Mathematics
Mathematics and Statistics
Title Polyharmonic capacity and Wiener test of higher order
URI https://link.springer.com/article/10.1007/s00222-017-0756-y
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-144873
Volume 211
WOSCitedRecordID wos000422955900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-1297
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014372
  issn: 0020-9910
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCDj1axvtiD9KAsrEmabo9FLR60FC21t7CvaKAm0qRC_r2zmwcoUtD7ZjeZbGa-LzPzLUIXXui7QgtFBNch8SRlhLvKIUq7vgmIgEhso_BDbzRis1l_XPZxp1W1e5WStJ66bnazfZvEeFUIcz7J19EGRDtmzmt4ep7WqQOTiCrqOiiBpepU5m9TfA9G1bI_VENtpBnu_use99BOCSzxoNgJ-2hNx03UGsRAqt9z3MG21NP-Q2-i7cdarDVtoe44medGwdqo5GIJ0VMCNMc8VvglMqrUGOBohpMQv9miEGzlOg_QZHg3ubkn5WkKRAJEy4g0AkQcyLAAhsUEDR1xDdxOUl-5HlNaMeVca0d1uZBU-bLf04L2Q8k4E0ZF7hA14iTWRwhTrsArwgNyyjwYxhTjgGMY8HLm8lC2Ea2sGshSadwceDEPao1ka6cA7BQYOwV5G13Wl3wUMhurBl9V1g_KLy5dNbpTvM16YqOofRtNB0GyeA3m0RLoD9A29_hP056gLcBOrCjgPkWNbLHUZ2hTfmZRuji3W_ILk0rc1w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB60CuqDt1jPPIgPSiB21236WDxQbEvRUn0LuVYLdSs9hP57J9kDFCnoezbZnc3OfN_OzBeAkzCOAmWVoUramIaacSoDU6HGBpELiIhIfKNwo9pq8ZeXWjvr4x7l1e55StJ76qLZzfdtUudVMcxFdDoPCyEGLCeY__jULVIHLhGV1nUwiksVqczfpvgejPJlf6iG-khzu_ave1yH1QxYknq6EzZgziabsFVPkFS_T8kp8aWe_h_6Jqw0C7HW0RZctgf9qVOwdiq5RGP01AjNiUwMee45VWqCcHRMBjF580UhxMt1bkPn9qZzdUez0xSoRog2ptoJEEkkwwoZFlcsrqgL5HaaRSYIubGGm8qFrZhLqTQzka5VrWK1WHPJlVOR24FSMkjsLhAmDXpFfEDJeIjDuOEScQxHXs4DGesysNyqQmdK4-7Ai74oNJK9nQTaSTg7iWkZzopLPlKZjVmDz3Pri-yLG80afZq-zWJip6h93evWxWD4Kvq9CdIfpG3B3p-mPYalu06zIRr3rYd9WEYcxdNi7gMojYcTewiL-nPcGw2P_Pb8AvZP37s
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60iujBt1ifOYgHJRi76zY9FmtRrKWgqLeQ12qhbqXdCv33TrIPUEQQ79kkO8lmvm9n5gvAURhHgbLKUCVtTEPNOJWBqVFjg8g5REQkvlC4U-92-fNzo5ffczoust2LkGRW0-BUmpL07N3EZ2Xhm6_hpO6ERZcX0ekszIUuj97R9fvHMozgglJZjgejOGwZ1vypi6-OqZjCNwVR73XaK_-e7yos54CTNLMdsgYzNlmHjWaCZPttSo6JTwH1_9bXYemuFHEdb8BFbziYOmVrp55LNHpVjZCdyMSQp75TqyYIU1MyjMmrTxYhXsZzEx7aVw-X1zS_ZYFqhG4p1U6YSCJJVsi8uGJxTZ0j59MsMkHIjTXc1M5tzVxIpZmJdKNuFWvEmkuunLrcFlSSYWK3gTBp8LTEF5SMh9iMGy4R33Dk6zyQsa4CKywsdK5A7i7CGIhSO9nbSaCdhLOTmFbhpHzkPZPf-K3xabESIv8Sx7-1Ps5WtuzYKW23-o9NMRy9iEF_grQI6Vyw86duD2Gh12qLzk33dhcWEV7xLMd7DyrpaGL3YV5_pP3x6MDv1E8jhuif
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyharmonic+capacity+and+Wiener+test+of+higher+order&rft.jtitle=Inventiones+mathematicae&rft.au=Mayboroda%2C+Svitlana&rft.au=Maz%E2%80%99ya%2C+Vladimir&rft.date=2018-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0020-9910&rft.eissn=1432-1297&rft.volume=211&rft.issue=2&rft.spage=779&rft.epage=853&rft_id=info:doi/10.1007%2Fs00222-017-0756-y&rft.externalDocID=10_1007_s00222_017_0756_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-9910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-9910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-9910&client=summon