Two High-Performance Adaptive Filter Implementation Schemes Using Distributed Arithmetic

Distributed arithmetic (DA) is performed to design bit-level architectures for vector-vector multiplication with a direct application for the implementation of convolution, which is necessary for digital filters. In this brief, two novel DA-based implementation schemes are proposed for adaptive fini...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. II, Express briefs Vol. 58; no. 9; pp. 600 - 604
Main Authors: Rui Guo, DeBrunner, L. S.
Format: Journal Article
Language:English
Published: New York IEEE 01.09.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1549-7747, 1558-3791
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Distributed arithmetic (DA) is performed to design bit-level architectures for vector-vector multiplication with a direct application for the implementation of convolution, which is necessary for digital filters. In this brief, two novel DA-based implementation schemes are proposed for adaptive finite-impulse response filters. Different from conventional DA techniques, our proposed schemes use coefficients as addresses to access a series of lookup tables (LUTs) storing sums of delayed and scaled input samples. Two smart LUT updating methods are developed, and least-mean-square adaptation is performed to update the weights and minimize the mean square error between the estimated and desired output. Results show that our two high-performance designs achieve high speed, low computation complexities, and low area cost.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2011.2161168