Some Extensions of Loewner's Theory of Monotone Operator Functions

Several extensions of Loewner's theory of monotone operator functions are given. These include a theorem on boundary interpolation for matrix-valued functions in the generalized Nevanlinna class. The theory of monotone operator functions is generalized from scalar-to matrix-valued functions of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of functional analysis Ročník 189; číslo 1; s. 1 - 20
Hlavní autori: Alpay, D., Bolotnikov, V., Dijksma, A., Rovnyak, J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 20.02.2002
ISSN:0022-1236, 1096-0783
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Several extensions of Loewner's theory of monotone operator functions are given. These include a theorem on boundary interpolation for matrix-valued functions in the generalized Nevanlinna class. The theory of monotone operator functions is generalized from scalar-to matrix-valued functions of an operator argument. A notion of κ-monotonicity is introduced and characterized in terms of classical Nevanlinna functions with removable singularities on a real interval. Corresponding results for Stieltjes functions are presented.
ISSN:0022-1236
1096-0783
DOI:10.1006/jfan.2001.3856