A Rough-to-Fine Evolutionary Multiobjective Optimization Algorithm

This article presents a rough-to-fine evolutionary multiobjective optimization algorithm based on the decomposition for solving problems in which the solutions are initially far from the Pareto-optimal set. Subsequently, a tree is constructed by a modified <inline-formula> <tex-math notatio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 52; číslo 12; s. 13472 - 13485
Hlavní autori: Gu, Fangqing, Liu, Hai-Lin, Cheung, Yiu-Ming, Zheng, Minyi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This article presents a rough-to-fine evolutionary multiobjective optimization algorithm based on the decomposition for solving problems in which the solutions are initially far from the Pareto-optimal set. Subsequently, a tree is constructed by a modified <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-means algorithm on <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> uniform weight vectors, and each node of the tree contains a weight vector. Each node is associated with a subproblem with the help of its weight vector. Consequently, a subproblem tree can be established. It is easy to find that the descendant subproblems are refinements of their ancestor subproblems. The proposed algorithm approaches the Pareto front (PF) by solving a few subproblems in the first few levels to obtain a rough PF and gradually refining the PF by involving the subproblems level-by-level. This strategy is highly favorable for solving problems in which the solutions are initially far from the Pareto set. Moreover, the proposed algorithm has lower time complexity. Theoretical analysis shows the complexity of dealing with a new candidate solution is <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(M \log N) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">M </tex-math></inline-formula> is the number of objectives. Empirical studies demonstrate the efficacy of the proposed algorithm.
AbstractList This article presents a rough-to-fine evolutionary multiobjective optimization algorithm based on the decomposition for solving problems in which the solutions are initially far from the Pareto-optimal set. Subsequently, a tree is constructed by a modified [Formula Omitted]-means algorithm on [Formula Omitted] uniform weight vectors, and each node of the tree contains a weight vector. Each node is associated with a subproblem with the help of its weight vector. Consequently, a subproblem tree can be established. It is easy to find that the descendant subproblems are refinements of their ancestor subproblems. The proposed algorithm approaches the Pareto front (PF) by solving a few subproblems in the first few levels to obtain a rough PF and gradually refining the PF by involving the subproblems level-by-level. This strategy is highly favorable for solving problems in which the solutions are initially far from the Pareto set. Moreover, the proposed algorithm has lower time complexity. Theoretical analysis shows the complexity of dealing with a new candidate solution is [Formula Omitted], where [Formula Omitted] is the number of objectives. Empirical studies demonstrate the efficacy of the proposed algorithm.
This article presents a rough-to-fine evolutionary multiobjective optimization algorithm based on the decomposition for solving problems in which the solutions are initially far from the Pareto-optimal set. Subsequently, a tree is constructed by a modified <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-means algorithm on <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> uniform weight vectors, and each node of the tree contains a weight vector. Each node is associated with a subproblem with the help of its weight vector. Consequently, a subproblem tree can be established. It is easy to find that the descendant subproblems are refinements of their ancestor subproblems. The proposed algorithm approaches the Pareto front (PF) by solving a few subproblems in the first few levels to obtain a rough PF and gradually refining the PF by involving the subproblems level-by-level. This strategy is highly favorable for solving problems in which the solutions are initially far from the Pareto set. Moreover, the proposed algorithm has lower time complexity. Theoretical analysis shows the complexity of dealing with a new candidate solution is <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(M \log N) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">M </tex-math></inline-formula> is the number of objectives. Empirical studies demonstrate the efficacy of the proposed algorithm.
This article presents a rough-to-fine evolutionary multiobjective optimization algorithm based on the decomposition for solving problems in which the solutions are initially far from the Pareto-optimal set. Subsequently, a tree is constructed by a modified k -means algorithm on N uniform weight vectors, and each node of the tree contains a weight vector. Each node is associated with a subproblem with the help of its weight vector. Consequently, a subproblem tree can be established. It is easy to find that the descendant subproblems are refinements of their ancestor subproblems. The proposed algorithm approaches the Pareto front (PF) by solving a few subproblems in the first few levels to obtain a rough PF and gradually refining the PF by involving the subproblems level-by-level. This strategy is highly favorable for solving problems in which the solutions are initially far from the Pareto set. Moreover, the proposed algorithm has lower time complexity. Theoretical analysis shows the complexity of dealing with a new candidate solution is O(M logN) , where M is the number of objectives. Empirical studies demonstrate the efficacy of the proposed algorithm.This article presents a rough-to-fine evolutionary multiobjective optimization algorithm based on the decomposition for solving problems in which the solutions are initially far from the Pareto-optimal set. Subsequently, a tree is constructed by a modified k -means algorithm on N uniform weight vectors, and each node of the tree contains a weight vector. Each node is associated with a subproblem with the help of its weight vector. Consequently, a subproblem tree can be established. It is easy to find that the descendant subproblems are refinements of their ancestor subproblems. The proposed algorithm approaches the Pareto front (PF) by solving a few subproblems in the first few levels to obtain a rough PF and gradually refining the PF by involving the subproblems level-by-level. This strategy is highly favorable for solving problems in which the solutions are initially far from the Pareto set. Moreover, the proposed algorithm has lower time complexity. Theoretical analysis shows the complexity of dealing with a new candidate solution is O(M logN) , where M is the number of objectives. Empirical studies demonstrate the efficacy of the proposed algorithm.
Author Cheung, Yiu-Ming
Gu, Fangqing
Zheng, Minyi
Liu, Hai-Lin
Author_xml – sequence: 1
  givenname: Fangqing
  surname: Gu
  fullname: Gu, Fangqing
  email: fqgu@gdut.edu.cn
  organization: College of Applied Mathematics, Guangdong University of Technology, Guangzhou, China
– sequence: 2
  givenname: Hai-Lin
  orcidid: 0000-0003-2276-1938
  surname: Liu
  fullname: Liu, Hai-Lin
  email: lhl@gdut.edu.cn
  organization: School of Applied Mathematics, Guangdong University of Technology, Guangzhou, China
– sequence: 3
  givenname: Yiu-Ming
  orcidid: 0000-0001-7629-4648
  surname: Cheung
  fullname: Cheung, Yiu-Ming
  email: ymc@comp.hkbu.edu.hk
  organization: Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
– sequence: 4
  givenname: Minyi
  surname: Zheng
  fullname: Zheng, Minyi
  organization: School of Applied Mathematics, Guangdong University of Technology, Guangzhou, China
BookMark eNp9kE1LwzAYx4NM3Jz7AOKl4MVLZ16alx63sakwGcg8eAptmm4ZbTPbdKCf3tSNHTwYCHlIfv-HJ79r0KtspQG4RXCMEIwf17OP6RhDjMYECkQovwADjJgIMea0d64Z74NR0-ygX8JfxeIK9EmECYs5GYDpJHiz7WYbOhsuTKWD-cEWrTO2Suqv4LUtfJnutHLmoIPV3pnSfCfdczApNrY2blvegMs8KRo9Op1D8L6Yr2fP4XL19DKbLENFMHOhEEopAUWKchqhXAuYRJQzRNOMxlmGUh4luYJM4VQTFeNMMeW3JijjImYZGYKHY999bT9b3ThZmkbpokgqbdtGYkohZpDHwqP3f9CdbevKTycxJ5wyziHyFD9SqrZNU-tcKuN-P-fqxBQSQdmZlp1p2ZmWJ9M-if4k97UpvbF_M3fHjNFan_k44oL4WX4A946I-g
CODEN ITCEB8
CitedBy_id crossref_primary_10_3390_math11061509
crossref_primary_10_1109_TGRS_2022_3217053
crossref_primary_10_1016_j_asoc_2023_111073
crossref_primary_10_1080_09540091_2021_1991278
crossref_primary_10_1016_j_swevo_2025_101883
Cites_doi 10.1109/TCYB.2015.2507366
10.1109/4235.974840
10.1109/TEVC.2018.2865590
10.1109/TEVC.2003.810761
10.1007/s00180-010-0197-1
10.1007/978-3-540-70928-2_14
10.1007/978-3-319-10762-2_57
10.1109/TEVC.2007.892759
10.1016/j.asoc.2015.09.052
10.1109/TEVC.2014.2308305
10.1162/EVCO_a_00109
10.1109/4235.996017
10.1007/978-3-319-99253-2_29
10.1162/EVCO_a_00009
10.1109/MCI.2017.2742868
10.1007/978-3-642-37140-0_25
10.1162/evco.2008.16.4.557
10.1109/TEVC.2016.2567648
10.1007/s00500-014-1480-9
10.1109/TEVC.2016.2519758
10.1007/978-3-540-69432-8_9
10.1109/TEVC.2016.2598687
10.1109/TEVC.2015.2420112
10.1145/2792984
10.1007/978-3-540-30217-9_84
10.1109/TEVC.2017.2695579
10.1109/TEVC.2015.2424921
10.1109/TEVC.2014.2373386
10.1109/TEVC.2013.2281525
10.1007/s00158-007-0163-x
10.1145/2908961.2931699
10.1109/TSMC.2017.2654301
10.1109/TSMC.2019.2898456
10.1109/TEVC.2016.2519378
10.1109/TCYB.2018.2859171
10.1109/TCYB.2014.2317693
10.1007/s00500-005-0537-1
10.1109/TEVC.2014.2339823
10.1109/TCYB.2014.2367526
10.1109/TEVC.2008.925798
10.1007/978-3-319-54157-0_18
10.1162/EVCO_a_00075
10.1109/TEVC.2013.2281535
10.1016/j.ejor.2006.08.008
10.1007/s10898-016-0417-5
10.1007/s10710-010-9105-2
10.1109/CEC.2011.5949946
10.1109/TCYB.2017.2779450
10.1109/JSEE.2015.00110
10.1109/TEVC.2016.2549267
10.1080/10798587.2009.10643036
10.1109/TEVC.2005.861417
10.1109/TEVC.2014.2350987
10.1007/978-3-540-31880-4_5
10.1109/TEVC.2016.2611642
10.1109/TEVC.2014.2315442
10.1109/TEVC.2013.2281533
10.1109/TCYB.2013.2247594
10.1109/TCYB.2018.2834466
10.1016/j.artint.2012.09.005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2021.3081357
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Sciences (General)
EISSN 2168-2275
EndPage 13485
ExternalDocumentID 10_1109_TCYB_2021_3081357
9478301
Genre orig-research
GrantInformation_xml – fundername: Hong Kong Baptist University (HKBU), Research Committee, Initiation Grant, Faculty Niche Research Areas (IG-FNRA) 2018/19
  grantid: RC-FNRA-IG/18-19/SCI/03
  funderid: 10.13039/501100001747
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2021A1515011839; 2020A1515011500
  funderid: 10.13039/501100003453
– fundername: Programme of Science and Technology of Guangdong Province
  grantid: 2020A0505100056
– fundername: Innovation and Technology Fund of Innovation and Technology Commission of the Government of the Hong Kong
  grantid: ITS/339/18
– fundername: National Natural Science Foundation of China
  grantid: 61672444
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c326t-88ccc808b1f541fe80a457615bd59dd1b74afc06c2be3c92dc6cdc6e31d7896d3
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732253700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Mon Sep 29 03:57:55 EDT 2025
Mon Jun 30 04:33:50 EDT 2025
Tue Nov 18 22:35:34 EST 2025
Sat Nov 29 02:02:34 EST 2025
Wed Aug 27 02:14:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-88ccc808b1f541fe80a457615bd59dd1b74afc06c2be3c92dc6cdc6e31d7896d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2276-1938
0000-0001-7629-4648
PMID 34236973
PQID 2737567701
PQPubID 85422
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TCYB_2021_3081357
crossref_primary_10_1109_TCYB_2021_3081357
proquest_miscellaneous_2550260798
proquest_journals_2737567701
ieee_primary_9478301
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref58
ref14
ref53
ref52
ref11
ref54
ref10
nicola (ref4) 2007; 181
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
gu (ref55) 2012; 8
ref49
ref8
ref9
ref3
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
trivedi (ref15) 2017; 21
ref39
zitzler (ref1) 2001
tian (ref38) 2020
ref24
deb (ref7) 2001
ref23
ref26
ref25
ref64
ref20
ref66
ref22
ref65
ref21
emmerich (ref63) 2005
ref28
ref27
ref29
ref60
ref62
ref61
hai-lin (ref6) 2010; 2
References_xml – ident: ref60
  doi: 10.1109/TCYB.2015.2507366
– ident: ref8
  doi: 10.1109/4235.974840
– ident: ref29
  doi: 10.1109/TEVC.2018.2865590
– volume: 2
  start-page: 282
  year: 2010
  ident: ref6
  article-title: T-MOEA/D: MOEA/D with objective transform in multi-objective problems
  publication-title: Proc Int Conf Inf Sci Manage Eng
– ident: ref62
  doi: 10.1109/TEVC.2003.810761
– ident: ref50
  doi: 10.1007/s00180-010-0197-1
– ident: ref43
  doi: 10.1007/978-3-540-70928-2_14
– ident: ref10
  doi: 10.1007/978-3-319-10762-2_57
– ident: ref3
  doi: 10.1109/TEVC.2007.892759
– ident: ref46
  doi: 10.1016/j.asoc.2015.09.052
– ident: ref22
  doi: 10.1109/TEVC.2014.2308305
– ident: ref54
  doi: 10.1162/EVCO_a_00109
– ident: ref2
  doi: 10.1109/4235.996017
– ident: ref32
  doi: 10.1007/978-3-319-99253-2_29
– volume: 8
  start-page: 3677
  year: 2012
  ident: ref55
  article-title: A multiobjective evolutionary algorithm using dynamic weight design method
  publication-title: Int J Innovat Comput Inf Control
– ident: ref39
  doi: 10.1162/EVCO_a_00009
– ident: ref64
  doi: 10.1109/MCI.2017.2742868
– ident: ref65
  doi: 10.1007/978-3-642-37140-0_25
– ident: ref47
  doi: 10.1162/evco.2008.16.4.557
– start-page: 95
  year: 2001
  ident: ref1
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization
  publication-title: Proc Evol Methods Design Optim Control Appl Ind Problems
– ident: ref23
  doi: 10.1109/TEVC.2016.2567648
– ident: ref16
  doi: 10.1007/s00500-014-1480-9
– ident: ref19
  doi: 10.1109/TEVC.2016.2519758
– volume: 21
  start-page: 440
  year: 2017
  ident: ref15
  article-title: A survey of multiobjective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans Evol Comput
– ident: ref45
  doi: 10.1007/978-3-540-69432-8_9
– ident: ref30
  doi: 10.1109/TEVC.2016.2598687
– ident: ref36
  doi: 10.1109/TEVC.2015.2420112
– ident: ref14
  doi: 10.1145/2792984
– ident: ref57
  doi: 10.1007/978-3-540-30217-9_84
– ident: ref5
  doi: 10.1109/TEVC.2017.2695579
– ident: ref37
  doi: 10.1109/TEVC.2015.2424921
– ident: ref35
  doi: 10.1109/TEVC.2014.2373386
– ident: ref41
  doi: 10.1109/TEVC.2013.2281525
– ident: ref66
  doi: 10.1007/s00158-007-0163-x
– ident: ref52
  doi: 10.1145/2908961.2931699
– year: 2020
  ident: ref38
  article-title: A multistage evolutionary algorithm for better diversity preservation in multiobjective optimization
  publication-title: IEEE Trans Syst Man Cybern Syst
– ident: ref25
  doi: 10.1109/TSMC.2017.2654301
– ident: ref53
  doi: 10.1109/TSMC.2019.2898456
– ident: ref59
  doi: 10.1109/TEVC.2016.2519378
– ident: ref20
  doi: 10.1109/TCYB.2018.2859171
– ident: ref11
  doi: 10.1109/TCYB.2014.2317693
– ident: ref49
  doi: 10.1007/s00500-005-0537-1
– ident: ref24
  doi: 10.1109/TEVC.2014.2339823
– ident: ref40
  doi: 10.1109/TCYB.2014.2367526
– ident: ref56
  doi: 10.1109/TEVC.2008.925798
– ident: ref12
  doi: 10.1007/978-3-319-54157-0_18
– ident: ref9
  doi: 10.1162/EVCO_a_00075
– year: 2001
  ident: ref7
  publication-title: Multiobjective Optimization Using Evolutionary Algorithms
– ident: ref17
  doi: 10.1109/TEVC.2013.2281535
– volume: 181
  start-page: 1653
  year: 2007
  ident: ref4
  article-title: SMS-EMOA: Multiobjective selection based on dominated hypervolume
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref44
  doi: 10.1007/s10898-016-0417-5
– ident: ref51
  doi: 10.1007/s10710-010-9105-2
– ident: ref48
  doi: 10.1109/CEC.2011.5949946
– ident: ref33
  doi: 10.1109/TCYB.2017.2779450
– ident: ref28
  doi: 10.1109/JSEE.2015.00110
– ident: ref58
  doi: 10.1109/TEVC.2016.2549267
– ident: ref26
  doi: 10.1080/10798587.2009.10643036
– ident: ref13
  doi: 10.1109/TEVC.2005.861417
– ident: ref61
  doi: 10.1109/TEVC.2014.2350987
– start-page: 62
  year: 2005
  ident: ref63
  article-title: An EMO algorithm using the hypervolume measure as selection criterion
  publication-title: Proc Evol Multi-Criterion Optimization
  doi: 10.1007/978-3-540-31880-4_5
– ident: ref31
  doi: 10.1109/TEVC.2016.2611642
– ident: ref18
  doi: 10.1109/TEVC.2014.2315442
– ident: ref27
  doi: 10.1109/TEVC.2013.2281533
– ident: ref21
  doi: 10.1109/TCYB.2013.2247594
– ident: ref34
  doi: 10.1109/TCYB.2018.2834466
– ident: ref42
  doi: 10.1016/j.artint.2012.09.005
SSID ssj0000816898
Score 2.368253
Snippet This article presents a rough-to-fine evolutionary multiobjective optimization algorithm based on the decomposition for solving problems in which the solutions...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13472
SubjectTerms Approximation algorithms
Complexity
Decomposition
Diversity reception
Empirical analysis
evolutionary algorithm
Evolutionary algorithms
Evolutionary computation
incremental
multiobjective optimization
Multiple objective analysis
Optimization
Optimization algorithms
Pareto optimization
Pareto optimum
Problem solving
Sociology
Sorting
Statistics
tree-like weight design
Title A Rough-to-Fine Evolutionary Multiobjective Optimization Algorithm
URI https://ieeexplore.ieee.org/document/9478301
https://www.proquest.com/docview/2737567701
https://www.proquest.com/docview/2550260798
Volume 52
WOSCitedRecordID wos000732253700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB6s9MGXtmpLr7WyhT6oNLrZ7G6Sx1M8-mSLKJxPS37MVkVvy3kn9L_vJBsXxCL4sBDY2WU3M5l8k2TmA_gmasOlN45ZZVpWtqVh1hU1M7rM2wCYlbSRbEKenKjpVP9age9DLgwixsNnuB-acS_fd24ZlsoOdCmVCMlar6Ss-1ytYT0lEkhE6tuCGoxQhUybmDzXB2dHF4cUDBZ8X5CgqAL3Xqh9V2spHs1IkWLliV-Ok83k7cs-8x28SaAyG_dWsA4rONuA9TRs77KdVFt6dwPWArjsazNvwuE4Ow0kPWzRsQmhzez4Phmimf_NYmpuZ697j5j9JN9ym5I2s_HN725-tbi8fQ_nk-Ozox8scSowR0BtwZRyzqlcWd5WJW9R5aakkINX1lfae25laVqX166wKJwuvKsdXSi4l0rXXnyA1Vk3w4-QIf2kMEaWCj15Aqsp-EKsJCrOLRY4gvyhXxuXCo4H3oubJgYeuW6CVpqglSZpZQR7wyN_-mobzwlvhr4fBFO3j2DrQXlNGo93DYE0WdVShttfh9s0ksL2iJlhtyQZCtYoupNaffr_mz_DWhGSH-Jhli1YXcyX-AVeu3vS23ybjHKqtqNR_gN7ENuP
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9KFdoXtR_iadUVfGjFtJvN7iZ5vJYeFetZygnt05KPWT9ob-V6V_C_d5JLF4oi-LAQyOyyySST3ySZ-QG8FbXh0hvHrDItK9vSMOuKmhld5m0AzEraSDYhx2N1caHPVuB9HwuDiPHyGe6HYjzL951bhK2yA11KJUKw1oPAnJWitfodlUghEclvCyowwhUyHWPyXB9Mji4PyR0s-L4gQVEF9r2Q_a7WUtxbkyLJyh-WOS43o8f_96NP4FGCldlwOQ42YAWnm7CRJu5NtpuyS-9twnqAl8vszFtwOMzOA00Pm3dsRHgzO75NQ9HMfmUxOLezP5Y2MftM1uU6hW1mw6uv3ez7_Nv1NnwZHU-OTlhiVWCOoNqcKeWcU7myvK1K3qLKTUlOB6-sr7T33MrStC6vXWFROF14Vzt6UHAvla69eAqr026KzyBDaqQwRpYKPdkCq8n9QqwkKs4tFjiA_K5fG5dSjgfmi6smuh65boJWmqCVJmllAO_6V34u8238S3gr9H0vmLp9ADt3ymvSjLxpCKbJqpYyVL_pq2kuhQMSM8VuQTLkrpF_J7V6_vcvv4a1k8mn0-b0w_jjC1gvQihEvNqyA6vz2QJfwkN3SzqcvYpD8zfn8d3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Rough-to-Fine+Evolutionary+Multiobjective+Optimization+Algorithm&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Gu%2C+Fangqing&rft.au=Hai-Lin%2C+Liu&rft.au=Yiu-Ming+Cheung&rft.au=Zheng%2C+Minyi&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=12&rft.spage=13472&rft_id=info:doi/10.1109%2FTCYB.2021.3081357&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon