A Rough-to-Fine Evolutionary Multiobjective Optimization Algorithm

This article presents a rough-to-fine evolutionary multiobjective optimization algorithm based on the decomposition for solving problems in which the solutions are initially far from the Pareto-optimal set. Subsequently, a tree is constructed by a modified <inline-formula> <tex-math notatio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 52; číslo 12; s. 13472 - 13485
Hlavní autoři: Gu, Fangqing, Liu, Hai-Lin, Cheung, Yiu-Ming, Zheng, Minyi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article presents a rough-to-fine evolutionary multiobjective optimization algorithm based on the decomposition for solving problems in which the solutions are initially far from the Pareto-optimal set. Subsequently, a tree is constructed by a modified <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-means algorithm on <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> uniform weight vectors, and each node of the tree contains a weight vector. Each node is associated with a subproblem with the help of its weight vector. Consequently, a subproblem tree can be established. It is easy to find that the descendant subproblems are refinements of their ancestor subproblems. The proposed algorithm approaches the Pareto front (PF) by solving a few subproblems in the first few levels to obtain a rough PF and gradually refining the PF by involving the subproblems level-by-level. This strategy is highly favorable for solving problems in which the solutions are initially far from the Pareto set. Moreover, the proposed algorithm has lower time complexity. Theoretical analysis shows the complexity of dealing with a new candidate solution is <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(M \log N) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">M </tex-math></inline-formula> is the number of objectives. Empirical studies demonstrate the efficacy of the proposed algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2021.3081357