A Novel Interval Type-2 Fuzzy System Identification Method Based on the Modified Fuzzy C-Regression Model

In this article, a novel interval type-2 Takagi-Sugeno fuzzy <inline-formula> <tex-math notation="LaTeX">c </tex-math></inline-formula>-regression modeling method with a modified distance definition is proposed. The modified distance definition is developed to descr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 52; H. 9; S. 9834 - 9845
Hauptverfasser: Tsai, Shun-Hung, Chen, Yu-Wen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, a novel interval type-2 Takagi-Sugeno fuzzy <inline-formula> <tex-math notation="LaTeX">c </tex-math></inline-formula>-regression modeling method with a modified distance definition is proposed. The modified distance definition is developed to describe the distance between each data point and the local type-2 fuzzy model. To improve the robustness of the proposed identification method, a modified objective function is presented. In addition, different from most previous studies that require numerous free parameters to be determined, an interval type-2 fuzzy <inline-formula> <tex-math notation="LaTeX">c </tex-math></inline-formula>-regression model is developed to reduce the number of such free parameters. Furthermore, an improved ratio between the upper and lower weights is proposed based on the upper and lower membership function with each input data, and the ordinary least-squares method is adopted to establish the type-2 fuzzy model. The Box-Jenkins model and two numerical models are given to illustrate the effectiveness and robustness of the proposed results.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2021.3072851