Polyhedral feasible set computation of MPC-based optimal control problems

Feasible sets play an important role in model predictive control &#x0028 MPC &#x0029 optimal control problems &#x0028 OCPs &#x0029. This paper proposes a multi-parametric programming-based algorithm to compute the feasible set for OCP derived from MPC-based algorithms involving both...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica Jg. 5; H. 4; S. 765 - 770
Hauptverfasser: Xie, Lantao, Xie, Lei, Su, Hongye, Wang, Jingdai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway Chinese Association of Automation (CAA) 01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2329-9266, 2329-9274
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Feasible sets play an important role in model predictive control &#x0028 MPC &#x0029 optimal control problems &#x0028 OCPs &#x0029. This paper proposes a multi-parametric programming-based algorithm to compute the feasible set for OCP derived from MPC-based algorithms involving both spectrahedron &#x0028 represented by linear matrix inequalities &#x0029 and polyhedral &#x0028 represented by a set of inequalities &#x0029 constraints. According to the geometrical meaning of the inner product of vectors, the maximum length of the projection vector from the feasible set to a unit spherical coordinates vector is computed and the optimal solution has been proved to be one of the vertices of the feasible set. After computing the vertices, the convex hull of these vertices is determined which equals the feasible set. The simulation results show that the proposed method is especially efficient for low dimensional feasible set computation and avoids the non-unicity problem of optimizers as well as the memory consumption problem that encountered by projection algorithms.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2329-9266
2329-9274
DOI:10.1109/JAS.2018.7511126