Polyhedral feasible set computation of MPC-based optimal control problems
Feasible sets play an important role in model predictive control ( MPC ) optimal control problems ( OCPs ). This paper proposes a multi-parametric programming-based algorithm to compute the feasible set for OCP derived from MPC-based algorithms involving both...
Saved in:
| Published in: | IEEE/CAA journal of automatica sinica Vol. 5; no. 4; pp. 765 - 770 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
Chinese Association of Automation (CAA)
01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2329-9266, 2329-9274 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Feasible sets play an important role in model predictive control ( MPC ) optimal control problems ( OCPs ). This paper proposes a multi-parametric programming-based algorithm to compute the feasible set for OCP derived from MPC-based algorithms involving both spectrahedron ( represented by linear matrix inequalities ) and polyhedral ( represented by a set of inequalities ) constraints. According to the geometrical meaning of the inner product of vectors, the maximum length of the projection vector from the feasible set to a unit spherical coordinates vector is computed and the optimal solution has been proved to be one of the vertices of the feasible set. After computing the vertices, the convex hull of these vertices is determined which equals the feasible set. The simulation results show that the proposed method is especially efficient for low dimensional feasible set computation and avoids the non-unicity problem of optimizers as well as the memory consumption problem that encountered by projection algorithms. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2329-9266 2329-9274 |
| DOI: | 10.1109/JAS.2018.7511126 |