Distributed MPC for Reconfigurable Architecture Systems via Alternating Direction Method of Multipliers

This paper investigates the distributed model predictive control (MPC) problem of linear systems where the network topology is changeable by the way of inserting new subsystems, disconnecting existing subsystems, or merely modifying the couplings between different subsystems. To equip live systems w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica Jg. 8; H. 7; S. 1336 - 1344
Hauptverfasser: Bai, Ting, Li, Shaoyuan, Zou, Yuanyuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 01.07.2021
Department of Automation,Shanghai Jiao Tong University,and Key Laboratory of System Control and Information Processing,Ministry of Education of China,Shanghai 200240,China
Schlagworte:
ISSN:2329-9266, 2329-9274
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the distributed model predictive control (MPC) problem of linear systems where the network topology is changeable by the way of inserting new subsystems, disconnecting existing subsystems, or merely modifying the couplings between different subsystems. To equip live systems with a quick response ability when modifying network topology, while keeping a satisfactory dynamic performance, a novel reconfiguration control scheme based on the alternating direction method of multipliers (ADMM) is presented. In this scheme, the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control. Meanwhile, by employing the powerful ADMM algorithm, the iterative formulas for solving the reconfigured optimization problem are obtained, which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response. Ultimately, the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2329-9266
2329-9274
DOI:10.1109/JAS.2020.1003195