Many-Objective Evolutionary Algorithm: Objective Space Reduction and Diversity Improvement
Evolutionary algorithms have been successfully applied for exploring both converged and diversified approximate Pareto-optimal fronts in multiobjective optimization problems, two- or three-objective in general. However, when solving problems with many objectives, nearly all algorithms perform poorly...
Uložené v:
| Vydané v: | IEEE transactions on evolutionary computation Ročník 20; číslo 1; s. 145 - 160 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.02.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Evolutionary algorithms have been successfully applied for exploring both converged and diversified approximate Pareto-optimal fronts in multiobjective optimization problems, two- or three-objective in general. However, when solving problems with many objectives, nearly all algorithms perform poorly due to the loss of selection pressure in fitness evaluation. An extremely large objective space could inadvertently deteriorate the effect of an evolutionary operator. In this paper, we propose a new approach to directly handle the challenges to solve many-objective optimization problems (MaOPs). This novel design includes two stages: first, the whole population quickly approaches a small number of "target" points near the true Pareto front; then, the proposed diversity improvement strategy is applied to facilitate these individuals to spread and well distribute. As a case study, the proposed algorithm based on this design is compared with five state-of-the-art algorithms. Experimental results show that the proposed method exhibits improved performance in both convergence and diversity for solving MaOPs. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1089-778X 1941-0026 |
| DOI: | 10.1109/TEVC.2015.2433266 |