An efficient multigrid algorithm for heterogeneous acoustic media sign‐indefinite high‐order FEM models
Summary Large‐scale scientific computing models are needed for the simulation of wave propagation especially for multiple frequency and high‐frequency models in complex heterogeneous media. Multigrid methods provide efficient iterative solvers for many large sign‐definite systems of equations result...
Uložené v:
| Vydané v: | Numerical linear algebra with applications Ročník 24; číslo 3; s. np - n/a |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Wiley Subscription Services, Inc
01.05.2017
|
| Predmet: | |
| ISSN: | 1070-5325, 1099-1506 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Summary
Large‐scale scientific computing models are needed for the simulation of wave propagation especially for multiple frequency and high‐frequency models in complex heterogeneous media. Multigrid methods provide efficient iterative solvers for many large sign‐definite systems of equations resulting from physical models. Time‐harmonic wave propagation models lead to sign‐indefinite systems with eigenvalues in the left half of the complex plane. Thus standard multigrid approaches applied in conjunction with a low‐order finite difference or finite element method are not sufficient. In this work, we describe a high‐order finite element method model for multiple (low to high) frequency time‐harmonic acoustic wave propagation on general curved, non‐convex, and non‐smooth domains with heterogeneous media using a multigrid approximation of the shifted Laplacian operator as a preconditioner. We implement the model using an efficient geometric multigrid approach with parallel grid transfer operator calculations to simulate the model using the BiCGStab iterative solver. We demonstrate the efficiency and parallel performance of the computational model with multiple low (5 wavelength) to high‐frequency (100 wavelength) input incident waves. Copyright © 2016 John Wiley & Sons, Ltd. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1070-5325 1099-1506 |
| DOI: | 10.1002/nla.2049 |