A Study on the Computational Complexity of the Bilevel Knapsack Problem

We analyze the computational complexity of three fundamental variants of the bilevel knapsack problem. All three variants are shown to be complete for the second level of the polynomial hierarchy. We also discuss the somewhat easier situation where the weight and profit coefficients in the knapsack...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on optimization Ročník 24; číslo 2; s. 823 - 838
Hlavní autoři: Caprara, Alberto, Carvalho, Margarida, Lodi, Andrea, Woeginger, Gerhard J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2014
Témata:
ISSN:1052-6234, 1095-7189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We analyze the computational complexity of three fundamental variants of the bilevel knapsack problem. All three variants are shown to be complete for the second level of the polynomial hierarchy. We also discuss the somewhat easier situation where the weight and profit coefficients in the knapsack problem are encoded in unary: two of the considered bilevel variants become solvable in polynomial time, whereas the third becomes NP-complete. Furthermore, we design a polynomial time approximation scheme for this third variant, whereas the other two variants cannot be approximated in polynomial time within any constant factor (assuming P\;$\ne$\;NP). [PUBLICATION ABSTRACT]
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1052-6234
1095-7189
DOI:10.1137/130906593