A Retinex modulated piecewise constant variational model for image segmentation and bias correction

In this paper, we propose a novel Retinex induced piecewise constant variational model for simultaneous segmentation of images with intensity inhomogeneity and bias correction. Firstly, we obtain an additive model by decomposing the original image into a smooth bias component and a structure part ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematical Modelling Jg. 54; S. 697
Hauptverfasser: Wu, Yongfei, Li, Meng, Zhang, Qifeng, Liu, Yang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier BV 01.02.2018
Schlagworte:
ISSN:1088-8691, 0307-904X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a novel Retinex induced piecewise constant variational model for simultaneous segmentation of images with intensity inhomogeneity and bias correction. Firstly, we obtain an additive model by decomposing the original image into a smooth bias component and a structure part based on the Retinex theory. Secondly, the structure part can be modeled by the piecewise constant variational model and thus deduced a new data fidelity term. Finally, we formulate a new energy functional by incorporating the data fidelity term into the level set framework and introducing a GL-regularizer to the level set function and a smooth regularizer to model the bias component. Based on the alternating minimization algorithm and the operator splitting method, we present a numerical scheme to solve the minimization problem efficiently. Experimental results on images from diverse modalities demonstrate the competitive performances of the proposed model and algorithm over other representative methods in term of efficiency and robustness.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1088-8691
0307-904X
DOI:10.1016/j.apm.2017.10.018