Solving Mixed Integer Bilinear Problems Using MILP Formulations

In this paper, we examine a mixed integer linear programming reformulation for mixed integer bilinear problems where each bilinearterm involves the product of a nonnegative integer variable and a nonnegative continuous variable. This reformulation is obtained by first replacing a general integer var...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SIAM journal on optimization Ročník 23; číslo 2; s. 721 - 744
Hlavní autori: Gupte, Akshay, Ahmed, Shabbir, Cheon, Myun Seok, Dey, Santanu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Society for Industrial and Applied Mathematics 01.01.2013
Predmet:
ISSN:1052-6234, 1095-7189
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we examine a mixed integer linear programming reformulation for mixed integer bilinear problems where each bilinearterm involves the product of a nonnegative integer variable and a nonnegative continuous variable. This reformulation is obtained by first replacing a general integer variable with its binary expansion and then using McCormick envelopes to linearize the resulting product of continuous and binary variables. We present the convex hull of the underlying mixed integer linear set. The effectiveness of this reformulation and associated facet-defining inequalities are computationally evaluated on five classes of instances. [PUBLICATION ABSTRACT]
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1052-6234
1095-7189
DOI:10.1137/110836183