An adaptive inertia weight teaching-learning-based optimization algorithm and its applications

This paper presents an effective metaheuristic algorithm called teaching learning-based optimization which is widely applied to solve the various real-world optimization problems. However, teaching learning-based optimization is rapidly trapped into local optima. To handle this kind of problem, we p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied Mathematical Modelling Ročník 77; s. 309
Hlavní autori: Shukla, Alok Kumar, Singh, Pradeep, Vardhan, Manu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier BV 01.01.2020
Predmet:
ISSN:1088-8691, 0307-904X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents an effective metaheuristic algorithm called teaching learning-based optimization which is widely applied to solve the various real-world optimization problems. However, teaching learning-based optimization is rapidly trapped into local optima. To handle this kind of problem, we proposed an improved teaching learning-based optimization algorithm using adaptive exponential distribution inertia weight and altering the position-updating equation. In addition, the logistic map is applied to generate a uniformly distributed population to enhance the quality of the initial populations. The performance of the proposed method is evaluated on a suite of benchmark functions with different characteristics. The efficiency of the proposed technique is also evaluated on six gene expression datasets with the help of three classifiers. The experimental result demonstrates that the proposed method is comparatively useful in adapting the inertia weight in comparison to the existing inertia weight strategies with regards to the quality of solutions, convergence rate along with classification accuracy. In particular gene selection, the proposed method has achieved up to 98% classification accuracy for three out of six datasets with optimal gene subsets for all six datasets and maximum accuracy is achieved as 100% in small round blue-cell tumor dataset.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1088-8691
0307-904X
DOI:10.1016/j.apm.2019.07.046