A Cloud-Based Framework for Large-Scale Monitoring of Ocean Plastics Using Multi-Spectral Satellite Imagery and Generative Adversarial Network

Marine debris is considered a threat to the inhabitants, as well as the marine environments. Accumulation of marine debris, besides climate change factors, including warming water, sea-level rise, and changes in oceans’ chemistry, are causing the potential collapse of the marine environment’s health...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) Vol. 13; no. 18; p. 2553
Main Authors: Jamali, Ali, Mahdianpari, Masoud
Format: Journal Article
Language:English
Published: Basel MDPI AG 17.09.2021
Subjects:
ISSN:2073-4441, 2073-4441
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Marine debris is considered a threat to the inhabitants, as well as the marine environments. Accumulation of marine debris, besides climate change factors, including warming water, sea-level rise, and changes in oceans’ chemistry, are causing the potential collapse of the marine environment’s health. Due to the increase of marine debris, including plastics in coastlines, ocean and sea surfaces, and even in deep ocean layers, there is a need for developing new advanced technology for the detection of large-sized marine pollution (with sizes larger than 1 m) using state-of-the-art remote sensing and machine learning tools. Therefore, we developed a cloud-based framework for large-scale marine pollution detection with the integration of Sentinel-2 satellite imagery and advanced machine learning tools on the Sentinel Hub cloud application programming interface (API). Moreover, we evaluated the performance of two shallow machine learning algorithms of random forest (RF) and support vector machine (SVM), as well as the deep learning method of the generative adversarial network-random forest (GAN-RF) for the detection of ocean plastics in the pilot site of Mytilene Island, Greece. Based on the obtained results, the shallow algorithms of RF and SVM achieved an overall accuracy of 88% and 84%, respectively, with available training data of plastic debris. The GAN-RF classifier improved the detection of ocean plastics of the RF method by 8%, achieving an overall accuracy of 96% by generating several synthetic ocean plastic samples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2073-4441
2073-4441
DOI:10.3390/w13182553