A novel dynamics model for railway ballastless track with medium-thick slabs
Motivated by the requirements for elaborated slab ballastless track dynamics analysis in practical engineering application, a novel dynamic model for the railway ballastless tracks with medium-thick slabs is proposed in this work based on the Reissner–Mindlin plate theory, and it is implemented into...
Saved in:
| Published in: | Applied Mathematical Modelling Vol. 78; p. 907 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Elsevier BV
01.02.2020
|
| Subjects: | |
| ISSN: | 1088-8691, 0307-904X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Motivated by the requirements for elaborated slab ballastless track dynamics analysis in practical engineering application, a novel dynamic model for the railway ballastless tracks with medium-thick slabs is proposed in this work based on the Reissner–Mindlin plate theory, and it is implemented into the coupled dynamics analysis of a vehicle and the ballastless track. First, an efficient and easily programmable computational algorithm is adopted to solve the transverse deflection of the Reissner–Mindlin plate, in which the displacements and shear strains are chosen as the independent variables and subsequently constructed by spline functions, resulting in no shear-locking effect. The involved partial differential equations are transformed into ordinary ones by using the energy variation principle. Further, a mathematical model for the ballastless track dynamics analysis is established, which can consider the effects of the shear deformation and moment of inertia involved in the medium-thick track slab. Experimental verification and comparative analysis with other models demonstrate the accuracy and efficiency of the proposed model. Finally, a spatially coupled dynamics model of a vehicle and the ballastless track is developed, and it is efficiently solved by using the hybrid explicit-implicit time integration method. Compared with the widely used modelling the track slab by elastic thin plate, the reliability and advantages of the proposed vehicle-slab track coupled dynamics model are demonstrated. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1088-8691 0307-904X |
| DOI: | 10.1016/j.apm.2019.09.051 |