Optimal loop-shaping for systems with large parameter uncertainty via linear programming
This paper describes an optimization method for designing feedback systems subject to large parameter uncertainty. Following the design philosophy of the Quantitative Feedback Theory (Horowitz and Sidi 1972 , 1978) the objective is to minimize the magnitude of the open loop L(jω) at high frequencies...
Uloženo v:
| Vydáno v: | International journal of control Ročník 62; číslo 3; s. 557 - 568 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Taylor & Francis Group
01.09.1995
Taylor & Francis |
| Témata: | |
| ISSN: | 0020-7179, 1366-5820 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper describes an optimization method for designing feedback systems subject to large parameter uncertainty. Following the design philosophy of the Quantitative Feedback Theory (Horowitz and Sidi
1972
, 1978) the objective is to minimize the magnitude of the open loop L(jω) at high frequencies subject to: (a) low and intermediate-frequency bounds capturing the closed-loop robust-performance objectives; (b) a universal-frequency bound on L(jω) which limits the effects of disturbances; and (c) realization constraints on L(s) in the form of Bode's integral. This last relation is discretized at a number of frequencies and defines, together with (a) and (b), the overall set of linear constraints in a resulting linear programming optimization problem. |
|---|---|
| ISSN: | 0020-7179 1366-5820 |
| DOI: | 10.1080/00207179508921556 |