Adaptive Detection Method for Organic Contamination Events in Water Distribution Systems Using the UV-Vis Spectrum Based on Semi-Supervised Learning
A method that uses the ultraviolet-visible (UV-Vis) spectrum to detect organic contamination events in water distribution systems exhibits the advantages of rapid detection, low cost, and no need for reagents. The speed, accuracy, and comprehensive analysis of such a method meet the requirements for...
Saved in:
| Published in: | Water (Basel) Vol. 10; no. 11; p. 1566 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
02.11.2018
|
| Subjects: | |
| ISSN: | 2073-4441, 2073-4441 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A method that uses the ultraviolet-visible (UV-Vis) spectrum to detect organic contamination events in water distribution systems exhibits the advantages of rapid detection, low cost, and no need for reagents. The speed, accuracy, and comprehensive analysis of such a method meet the requirements for online water quality monitoring. However, the UV-Vis spectrum is easily disturbed by environmental factors that cause fluctuations of the spectrum and result in false alarms. This study proposes an adaptive method for detecting organic contamination events in water distribution systems that uses the UV-Vis spectrum based on a semi-supervised learning model. This method modifies the baseline using dynamic orthogonal projection correction and adjusts the support vector regression model in real time. Thus, an adaptive online anomaly detection model that maximizes the use of unlabeled data is obtained. Experimental results demonstrate that the proposed method is adaptive to baseline drift and exhibits good performance in detecting organic contamination events in water distribution systems. |
|---|---|
| AbstractList | A method that uses the ultraviolet-visible (UV-Vis) spectrum to detect organic contamination events in water distribution systems exhibits the advantages of rapid detection, low cost, and no need for reagents. The speed, accuracy, and comprehensive analysis of such a method meet the requirements for online water quality monitoring. However, the UV-Vis spectrum is easily disturbed by environmental factors that cause fluctuations of the spectrum and result in false alarms. This study proposes an adaptive method for detecting organic contamination events in water distribution systems that uses the UV-Vis spectrum based on a semi-supervised learning model. This method modifies the baseline using dynamic orthogonal projection correction and adjusts the support vector regression model in real time. Thus, an adaptive online anomaly detection model that maximizes the use of unlabeled data is obtained. Experimental results demonstrate that the proposed method is adaptive to baseline drift and exhibits good performance in detecting organic contamination events in water distribution systems. |
| Author | Dong, Hui Yu, Qiaojun Yin, Hang Wang, Ke Hou, Dibo |
| Author_xml | – sequence: 1 givenname: Qiaojun surname: Yu fullname: Yu, Qiaojun – sequence: 2 givenname: Hang surname: Yin fullname: Yin, Hang – sequence: 3 givenname: Ke orcidid: 0000-0002-1926-4634 surname: Wang fullname: Wang, Ke – sequence: 4 givenname: Hui surname: Dong fullname: Dong, Hui – sequence: 5 givenname: Dibo surname: Hou fullname: Hou, Dibo |
| BookMark | eNptkc9O4zAQxi0EEizLgTewxIU9ZLHjOI6P3cL-kbriUArHyLEnxVVjZ22nK96DByZtEUKIucxo5vd9Gs18QYfOO0DonJLvjEly9Z8SSikvywN0khPBsqIo6OG7-hidxbgiYxSyqjg5Qc8To_pkN4CvIYFO1jv8F9KjN7j1Ad-GpXJW46l3SXXWqR1wswGXIrYOP6gEAV_bmIJtht1w_hQTdBEvonVLnB4BL-6zexvxvB_9w9DhHyqCwVsUOpvNhx7Cxm5bM1DBjaqv6KhV6whnr_kULX7e3E1_Z7PbX3-mk1mmWc5TVnHTKEEb00hoWmZyU7S54qI0ikkBIIVuDJFaykpTIEqUTHJRMVIwxUtN2Cm63Pv2wf8bIKa6s1HDeq0c-CHWOaM8F5JLMaIXH9CVH4Ibt6tzXuVyNC2rkbraUzr4GAO0tbZpd7MUlF3XlNTbR9VvjxoV3z4o-mA7FZ4-YV8A4e2V7g |
| CitedBy_id | crossref_primary_10_3390_pr10122614 crossref_primary_10_1007_s11157_021_09592_y crossref_primary_10_1007_s10661_019_7533_x crossref_primary_10_1007_s11356_023_26611_3 crossref_primary_10_3390_s22082987 crossref_primary_10_5194_adgeo_59_69_2023 crossref_primary_10_3390_w11091859 |
| Cites_doi | 10.1023/A:1010920819831 10.1007/s10115-009-0209-z 10.1214/17-BA1054 10.1088/0957-0233/24/5/055801 10.1177/0003702817724164 10.2166/wst.2011.354 10.1007/s11356-017-8907-7 10.2166/wst.2003.0086 10.1023/A:1012427100071 10.1016/j.patrec.2012.10.026 10.1016/j.proeng.2014.02.140 10.1016/j.watres.2015.05.013 10.1007/s11390-006-0800-7 10.1016/j.chemolab.2012.02.002 10.1021/es3014024 10.1038/nature09364 10.1016/S0001-2998(78)80014-2 10.1016/j.proeng.2015.08.963 10.1364/OE.23.017487 10.1093/nsr/nwx106 10.3390/s17030581 10.1111/j.1936-704X.2004.mp129001007.x 10.1016/j.patrec.2005.10.010 10.1108/SR-08-2017-0154 10.1016/j.watres.2013.01.017 10.1016/j.jenvman.2015.07.026 10.1109/TCYB.2014.2307349 10.1109/I2MTC.2018.8409760 |
| ContentType | Journal Article |
| Copyright | 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
| DOI | 10.3390/w10111566 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2073-4441 |
| ExternalDocumentID | 10_3390_w10111566 |
| GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BANNL BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH ESTFP GX1 IAO IPNFZ ITC KQ8 MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC RIG ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c325t-85dba71bdb9ebf3d2d4f2a576da397ee97cbd09c998c1e0a76395783043a56c03 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451736300073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-4441 |
| IngestDate | Mon Sep 08 06:26:49 EDT 2025 Mon Jun 30 07:27:20 EDT 2025 Sat Nov 29 07:10:56 EST 2025 Tue Nov 18 22:33:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c325t-85dba71bdb9ebf3d2d4f2a576da397ee97cbd09c998c1e0a76395783043a56c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1926-4634 |
| OpenAccessLink | https://www.proquest.com/docview/2582930468?pq-origsite=%requestingapplication% |
| PQID | 2582930468 |
| PQPubID | 2032318 |
| ParticipantIDs | proquest_miscellaneous_2315279597 proquest_journals_2582930468 crossref_citationtrail_10_3390_w10111566 crossref_primary_10_3390_w10111566 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-02 |
| PublicationDateYYYYMMDD | 2018-11-02 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Water (Basel) |
| PublicationYear | 2018 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Guo (ref_15) 2017; 37 Arad (ref_30) 2013; 47 Liu (ref_6) 2015; 161 Hsu (ref_22) 2002; 46 Hou (ref_13) 2015; 23 Aktekin (ref_25) 2018; 13 Guercio (ref_11) 2007; 103 Zhou (ref_18) 2010; 24 Boulet (ref_20) 2012; 117 Perelman (ref_26) 2012; 46 Baruthio (ref_4) 2015; 119 Gujer (ref_12) 2011; 63 Hou (ref_5) 2013; 24 ref_16 Poerio (ref_21) 2017; 72 Hand (ref_29) 2001; 45 Zhang (ref_14) 2017; 24 Blanchard (ref_19) 2010; 11 Zhou (ref_33) 2018; 5 Huang (ref_17) 2017; 44 Langergraber (ref_9) 2004; 50 Langergraber (ref_10) 2003; 47 ref_3 Piao (ref_1) 2010; 467 Liu (ref_7) 2015; 80 Hasan (ref_2) 2004; 129 ref_8 Fawcett (ref_27) 2006; 27 Metz (ref_28) 1978; 8 (ref_23) 2013; 34 Oliker (ref_24) 2014; 70 Zhou (ref_31) 2006; 21 Ye (ref_32) 2018; 38 |
| References_xml | – volume: 45 start-page: 171 year: 2001 ident: ref_29 article-title: A simple generalisation of the area under the ROC curve for multiple class classification problems publication-title: Mach. Learn. doi: 10.1023/A:1010920819831 – volume: 24 start-page: 415 year: 2010 ident: ref_18 article-title: Semi-supervised learning by disagreement publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-009-0209-z – volume: 13 start-page: 385 year: 2018 ident: ref_25 article-title: Sequential bayesian analysis of multivariate count data publication-title: Bayesian Anal. doi: 10.1214/17-BA1054 – ident: ref_3 – volume: 24 start-page: 055801 year: 2013 ident: ref_5 article-title: Detection of water-quality contamination events based on multi-sensor fusion using an extented dempster-shafer method publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/24/5/055801 – volume: 72 start-page: 378 year: 2017 ident: ref_21 article-title: Dual-domain calibration transfer using orthogonal projection publication-title: Appl. Spectrosc. doi: 10.1177/0003702817724164 – volume: 63 start-page: 1153 year: 2011 ident: ref_12 article-title: Identification of industrial wastewater by clustering wastewater treatment plant influent ultraviolet visible spectra publication-title: Water Sci. Technol. doi: 10.2166/wst.2011.354 – volume: 24 start-page: 12882 year: 2017 ident: ref_14 article-title: Real-time detection of organic contamination events in water distribution systems by principal components analysis of ultraviolet spectral data publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-8907-7 – volume: 47 start-page: 63 year: 2003 ident: ref_10 article-title: A multivariate calibration procedure for uv/vis spectrometric quantification of organic matter and nitrate in wastewater publication-title: Water Sci. Technol. doi: 10.2166/wst.2003.0086 – volume: 46 start-page: 291 year: 2002 ident: ref_22 article-title: A simple decomposition method for support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012427100071 – volume: 34 start-page: 439 year: 2013 ident: ref_23 article-title: An algorithm for training a large scale support vector machine for regression based on linear programming and decomposition methods publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2012.10.026 – volume: 70 start-page: 1271 year: 2014 ident: ref_24 article-title: Comparison of multivariate classification methods for contamination event detection in water distribution systems publication-title: Procedia Eng. doi: 10.1016/j.proeng.2014.02.140 – volume: 103 start-page: 143 year: 2007 ident: ref_11 article-title: An early warning monitoring system for quality control in a water distribution network publication-title: WIT Trans. Ecol. Environ. – volume: 80 start-page: 109 year: 2015 ident: ref_7 article-title: A multivariate based event detection method and performance comparison with two baseline methods publication-title: Water Res. doi: 10.1016/j.watres.2015.05.013 – volume: 11 start-page: 2973 year: 2010 ident: ref_19 article-title: Semi-supervised novelty detection publication-title: J. Mach. Learn. Res. – volume: 21 start-page: 800 year: 2006 ident: ref_31 article-title: Multi-instance learning from supervised view publication-title: J. Comput. Sci. Technol. doi: 10.1007/s11390-006-0800-7 – volume: 117 start-page: 61 year: 2012 ident: ref_20 article-title: Pretreatments by means of orthogonal projections publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2012.02.002 – volume: 46 start-page: 8212 year: 2012 ident: ref_26 article-title: Event detection in water distribution systems from multivariate water quality time series publication-title: Environ. Sci. Technol. doi: 10.1021/es3014024 – volume: 467 start-page: 43 year: 2010 ident: ref_1 article-title: The impacts of climate change on water resources and agriculture in China publication-title: Nature doi: 10.1038/nature09364 – volume: 8 start-page: 283 year: 1978 ident: ref_28 article-title: Basic principles of roc analysis publication-title: Semin. Nuclear Med. doi: 10.1016/S0001-2998(78)80014-2 – volume: 119 start-page: 901 year: 2015 ident: ref_4 article-title: Cloud-based event detection platform for water distribution networks using machine-learning algorithms publication-title: Procedia Eng. doi: 10.1016/j.proeng.2015.08.963 – volume: 23 start-page: 17487 year: 2015 ident: ref_13 article-title: Distribution water quality anomaly detection from UV optical sensor monitoring data by integrating principal component analysis with chi-square distribution publication-title: Opt. Express doi: 10.1364/OE.23.017487 – volume: 5 start-page: 44 year: 2018 ident: ref_33 article-title: A brief introduction to weakly supervised learning publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwx106 – volume: 50 start-page: 13 year: 2004 ident: ref_9 article-title: Time-resolved delta spectrometry: A method to define alarm parameters from spectral data publication-title: Water Sci. Technol. – ident: ref_8 doi: 10.3390/s17030581 – volume: 129 start-page: 27 year: 2004 ident: ref_2 article-title: Safeguarding the security of public water supplies using early warning systems: A brief review publication-title: J. Contemp. Water Res. Educ. doi: 10.1111/j.1936-704X.2004.mp129001007.x – volume: 27 start-page: 861 year: 2006 ident: ref_27 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 38 start-page: 376 year: 2018 ident: ref_32 article-title: Overhead ground wire detection by fusion global and local features and supervised learning method for a cable inspection robot publication-title: Sens. Rev. doi: 10.1108/SR-08-2017-0154 – volume: 37 start-page: 1460 year: 2017 ident: ref_15 article-title: Online detecting water quality anomaly from UV/Vis spectra using baseline correction and principal component analysis method publication-title: Spectrosc. Spectr. Anal. – volume: 47 start-page: 1899 year: 2013 ident: ref_30 article-title: A dynamic thresholds scheme for contaminant event detection in water distribution systems publication-title: Water Res. doi: 10.1016/j.watres.2013.01.017 – volume: 161 start-page: 385 year: 2015 ident: ref_6 article-title: Performance evaluation for three pollution detection methods using data from a real contamination accident publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2015.07.026 – volume: 44 start-page: 2405 year: 2017 ident: ref_17 article-title: Semi-supervised and unsupervised extreme learning machines publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2307349 – ident: ref_16 doi: 10.1109/I2MTC.2018.8409760 |
| SSID | ssj0000498850 |
| Score | 2.16771 |
| Snippet | A method that uses the ultraviolet-visible (UV-Vis) spectrum to detect organic contamination events in water distribution systems exhibits the advantages of... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1566 |
| SubjectTerms | Accuracy Adaptability Algorithms artificial intelligence Datasets Drinking water environmental factors Methods monitoring Organic contaminants rapid methods regression analysis Time series ultraviolet-visible spectroscopy water distribution Water quality |
| Title | Adaptive Detection Method for Organic Contamination Events in Water Distribution Systems Using the UV-Vis Spectrum Based on Semi-Supervised Learning |
| URI | https://www.proquest.com/docview/2582930468 https://www.proquest.com/docview/2315279597 |
| Volume | 10 |
| WOSCitedRecordID | wos000451736300073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELZY2MNyAPaBKC_NIg5cLNIkTuIT4lHESktV8eiyp8ixHVQJ0tK08Ef4wcy4bgEJ7WVPkZKRFXnseXjG38fYLpVmkrLUvCxUwmMjEy7jwPJEFXFilEkDBzzf_Z2229nNjez4A7fat1VObaIz1Kav6Yx8PxQZeibM5rKDwQMn1iiqrnoKjU9sgZDKcJ0vHLXanYvZKQvGv1kmggmkUIT5_f5Tk9jVhUNFfOOI3tth51xOl__3t1bYkg8r4XCyDr6yOVt9Y4tvwAa_s-dDowZk3ODEjlwDVgXnjj8aMHCFyaVMDQRXpag_xgm0qB2yhl4FfzAoHcIJ4ex6iizwaOfg2g4AI0m47vJurwYitR8Nx_dwhD7SAIna-x6_HA_IMtErD-t6-4Ndn7aujs-452TgOgrFiGfCFCptFqaQtigjE5q4DBUmLUZhZGOtTHVhAqkxi9NNGyg0XxKNAs5QpESig2iVzVf9yq4xEJaKlqFK4tTERSykxlGaUpcYMwQiTBtsb6qgXHvAcuLNuMsxcSFd5jNdNtjOTHQwQen4SGhzqsLcb9Q6f9Vfg_2cfcYtRnUTVdn-GGUi4v6VmHqt_3uIDfYF46nMXVUMN9k8zrTdYp_146hXD7f92sRn59d55-8LcLry5A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgl44DeiMMAgkHixljpxEj8gtNFOm9ZVE9u6vQXHdlAllpamZeL_4O_gb-TOScqQEG974DU5OZLz-fydffcdwGu6momLwvAi1zGPrIq5igLHY51HsdU2Cbzw_HiYjEbp2Zk6XIOfbS0MpVW2PtE7ajs1dEa-KWSKOxNGc-n72VdOXaPodrVtoVHDYt99v8CQrXq318f_-0aIncHxh13edBXgJhRywVNpc530cpsrlxehFTYqhEbabTXuzc6pxOQ2UAbjENNzgcYFqBDW-OlQy9gEIY57DdajEF1MB9a3B6PDj6tTHeTbaSqDWsIoDFWwedGjbu7SqzBe2vj-9Pt-M9u5879Nw1243dBmtlXj_B6sufI-3LokpvgAfmxZPSPnzfpu4RPMSnbg-2MzJOasLjo1jOS4NOX_eIMBpXtWbFKyUyTdc9YnHeGmBRhr1NyZT6tgyJTZyZiPJxU7ovLU-fKcbSMHsIxM3fmEHy1n5HnpUSNb-_khnFzJtDyCTjkt3WNg0tGlrNBxlNgoj6QyOEpPmQI5USBF0oW3LSAy0wiyU1-QLxkGZoSdbIWdLrxamc5qFZK_GW20kMkaR1Rlv_HShZer1-hC6F5Il266RJuQehsrDC2f_HuIF3Bj9_hgmA33RvtP4SZyx9SXZYoN6OCsu2dw3XxbTKr582ZdMPh01Rj8BRMATzI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDaHxwG9EYYBBIPFiNU3iJH5AaNBVVNuqSmNlPAXHdqZKLC1Ny8T_wV_DX8ed45QhId72wGtysiLn89139vk7gBd0NJOUpeZloRIeG5lwGQeWJ6qIE6NMGjjh-clBOhplJydyvAE_27swVFbZ-kTnqM1M0x55NxQZRibM5rJu6csixv3Bm_lXTh2k6KS1bafRQGTffj_H9K1-Pezjv34ZhoO9D-_ec99hgOsoFEueCVOotFeYQtqijExo4jJUSMGNwjhtrUx1YQKpMSfRPRsoXIwSIY6fESmR6CDCca_AFlLyCBO_rfHwcPxpvcOD3DvLRNDIGUWRDLrnPersLpwi44Ug-GcMcIFtcPN_npJbcMPTabbb4P82bNjqDly_ILJ4F37sGjUnp876dukKzyp26PpmMyTsrLmMqhnJdCmqC3IGe1QGWrNpxT4iGV-wPukL-9ZgzKu8M1duwZBBs-MJn0xrdkTXVherM_YWuYFhZGrPpvxoNSePTI-8nO3pPTi-lGm5D5vVrLIPgAlLh7WhSuLUxEUspMZRelKXyJUCEaYdeNWCI9deqJ36hXzJMWEjHOVrHHXg-dp03qiT_M1op4VP7h1Unf_GTgeerV-ja6HzIlXZ2QptIup5LDHlfPjvIZ7CNQRefjAc7T-CbaSUmbutGe7AJk66fQxX9bfltF488UuEwefLhuAv1eBYJA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Detection+Method+for+Organic+Contamination+Events+in+Water+Distribution+Systems+Using+the+UV-Vis+Spectrum+Based+on+Semi-Supervised+Learning&rft.jtitle=Water+%28Basel%29&rft.au=Yu%2C+Qiaojun&rft.au=Yin%2C+Hang&rft.au=Wang%2C+Ke&rft.au=Dong%2C+Hui&rft.date=2018-11-02&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=10&rft.issue=11&rft_id=info:doi/10.3390%2Fw10111566&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |