Adaptive Detection Method for Organic Contamination Events in Water Distribution Systems Using the UV-Vis Spectrum Based on Semi-Supervised Learning

A method that uses the ultraviolet-visible (UV-Vis) spectrum to detect organic contamination events in water distribution systems exhibits the advantages of rapid detection, low cost, and no need for reagents. The speed, accuracy, and comprehensive analysis of such a method meet the requirements for...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) Vol. 10; no. 11; p. 1566
Main Authors: Yu, Qiaojun, Yin, Hang, Wang, Ke, Dong, Hui, Hou, Dibo
Format: Journal Article
Language:English
Published: Basel MDPI AG 02.11.2018
Subjects:
ISSN:2073-4441, 2073-4441
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A method that uses the ultraviolet-visible (UV-Vis) spectrum to detect organic contamination events in water distribution systems exhibits the advantages of rapid detection, low cost, and no need for reagents. The speed, accuracy, and comprehensive analysis of such a method meet the requirements for online water quality monitoring. However, the UV-Vis spectrum is easily disturbed by environmental factors that cause fluctuations of the spectrum and result in false alarms. This study proposes an adaptive method for detecting organic contamination events in water distribution systems that uses the UV-Vis spectrum based on a semi-supervised learning model. This method modifies the baseline using dynamic orthogonal projection correction and adjusts the support vector regression model in real time. Thus, an adaptive online anomaly detection model that maximizes the use of unlabeled data is obtained. Experimental results demonstrate that the proposed method is adaptive to baseline drift and exhibits good performance in detecting organic contamination events in water distribution systems.
AbstractList A method that uses the ultraviolet-visible (UV-Vis) spectrum to detect organic contamination events in water distribution systems exhibits the advantages of rapid detection, low cost, and no need for reagents. The speed, accuracy, and comprehensive analysis of such a method meet the requirements for online water quality monitoring. However, the UV-Vis spectrum is easily disturbed by environmental factors that cause fluctuations of the spectrum and result in false alarms. This study proposes an adaptive method for detecting organic contamination events in water distribution systems that uses the UV-Vis spectrum based on a semi-supervised learning model. This method modifies the baseline using dynamic orthogonal projection correction and adjusts the support vector regression model in real time. Thus, an adaptive online anomaly detection model that maximizes the use of unlabeled data is obtained. Experimental results demonstrate that the proposed method is adaptive to baseline drift and exhibits good performance in detecting organic contamination events in water distribution systems.
Author Dong, Hui
Yu, Qiaojun
Yin, Hang
Wang, Ke
Hou, Dibo
Author_xml – sequence: 1
  givenname: Qiaojun
  surname: Yu
  fullname: Yu, Qiaojun
– sequence: 2
  givenname: Hang
  surname: Yin
  fullname: Yin, Hang
– sequence: 3
  givenname: Ke
  orcidid: 0000-0002-1926-4634
  surname: Wang
  fullname: Wang, Ke
– sequence: 4
  givenname: Hui
  surname: Dong
  fullname: Dong, Hui
– sequence: 5
  givenname: Dibo
  surname: Hou
  fullname: Hou, Dibo
BookMark eNptkc9O4zAQxi0EEizLgTewxIU9ZLHjOI6P3cL-kbriUArHyLEnxVVjZ22nK96DByZtEUKIucxo5vd9Gs18QYfOO0DonJLvjEly9Z8SSikvywN0khPBsqIo6OG7-hidxbgiYxSyqjg5Qc8To_pkN4CvIYFO1jv8F9KjN7j1Ad-GpXJW46l3SXXWqR1wswGXIrYOP6gEAV_bmIJtht1w_hQTdBEvonVLnB4BL-6zexvxvB_9w9DhHyqCwVsUOpvNhx7Cxm5bM1DBjaqv6KhV6whnr_kULX7e3E1_Z7PbX3-mk1mmWc5TVnHTKEEb00hoWmZyU7S54qI0ikkBIIVuDJFaykpTIEqUTHJRMVIwxUtN2Cm63Pv2wf8bIKa6s1HDeq0c-CHWOaM8F5JLMaIXH9CVH4Ibt6tzXuVyNC2rkbraUzr4GAO0tbZpd7MUlF3XlNTbR9VvjxoV3z4o-mA7FZ4-YV8A4e2V7g
CitedBy_id crossref_primary_10_3390_pr10122614
crossref_primary_10_1007_s11157_021_09592_y
crossref_primary_10_1007_s10661_019_7533_x
crossref_primary_10_1007_s11356_023_26611_3
crossref_primary_10_3390_s22082987
crossref_primary_10_5194_adgeo_59_69_2023
crossref_primary_10_3390_w11091859
Cites_doi 10.1023/A:1010920819831
10.1007/s10115-009-0209-z
10.1214/17-BA1054
10.1088/0957-0233/24/5/055801
10.1177/0003702817724164
10.2166/wst.2011.354
10.1007/s11356-017-8907-7
10.2166/wst.2003.0086
10.1023/A:1012427100071
10.1016/j.patrec.2012.10.026
10.1016/j.proeng.2014.02.140
10.1016/j.watres.2015.05.013
10.1007/s11390-006-0800-7
10.1016/j.chemolab.2012.02.002
10.1021/es3014024
10.1038/nature09364
10.1016/S0001-2998(78)80014-2
10.1016/j.proeng.2015.08.963
10.1364/OE.23.017487
10.1093/nsr/nwx106
10.3390/s17030581
10.1111/j.1936-704X.2004.mp129001007.x
10.1016/j.patrec.2005.10.010
10.1108/SR-08-2017-0154
10.1016/j.watres.2013.01.017
10.1016/j.jenvman.2015.07.026
10.1109/TCYB.2014.2307349
10.1109/I2MTC.2018.8409760
ContentType Journal Article
Copyright 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
DOI 10.3390/w10111566
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4441
ExternalDocumentID 10_3390_w10111566
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BANNL
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
ESTFP
GX1
IAO
IPNFZ
ITC
KQ8
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
RIG
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c325t-85dba71bdb9ebf3d2d4f2a576da397ee97cbd09c998c1e0a76395783043a56c03
IEDL.DBID BENPR
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451736300073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-4441
IngestDate Mon Sep 08 06:26:49 EDT 2025
Mon Jun 30 07:27:20 EDT 2025
Sat Nov 29 07:10:56 EST 2025
Tue Nov 18 22:33:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-85dba71bdb9ebf3d2d4f2a576da397ee97cbd09c998c1e0a76395783043a56c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1926-4634
OpenAccessLink https://www.proquest.com/docview/2582930468?pq-origsite=%requestingapplication%
PQID 2582930468
PQPubID 2032318
ParticipantIDs proquest_miscellaneous_2315279597
proquest_journals_2582930468
crossref_citationtrail_10_3390_w10111566
crossref_primary_10_3390_w10111566
PublicationCentury 2000
PublicationDate 2018-11-02
PublicationDateYYYYMMDD 2018-11-02
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-02
  day: 02
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Guo (ref_15) 2017; 37
Arad (ref_30) 2013; 47
Liu (ref_6) 2015; 161
Hsu (ref_22) 2002; 46
Hou (ref_13) 2015; 23
Aktekin (ref_25) 2018; 13
Guercio (ref_11) 2007; 103
Zhou (ref_18) 2010; 24
Boulet (ref_20) 2012; 117
Perelman (ref_26) 2012; 46
Baruthio (ref_4) 2015; 119
Gujer (ref_12) 2011; 63
Hou (ref_5) 2013; 24
ref_16
Poerio (ref_21) 2017; 72
Hand (ref_29) 2001; 45
Zhang (ref_14) 2017; 24
Blanchard (ref_19) 2010; 11
Zhou (ref_33) 2018; 5
Huang (ref_17) 2017; 44
Langergraber (ref_9) 2004; 50
Langergraber (ref_10) 2003; 47
ref_3
Piao (ref_1) 2010; 467
Liu (ref_7) 2015; 80
Hasan (ref_2) 2004; 129
ref_8
Fawcett (ref_27) 2006; 27
Metz (ref_28) 1978; 8
(ref_23) 2013; 34
Oliker (ref_24) 2014; 70
Zhou (ref_31) 2006; 21
Ye (ref_32) 2018; 38
References_xml – volume: 45
  start-page: 171
  year: 2001
  ident: ref_29
  article-title: A simple generalisation of the area under the ROC curve for multiple class classification problems
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010920819831
– volume: 24
  start-page: 415
  year: 2010
  ident: ref_18
  article-title: Semi-supervised learning by disagreement
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-009-0209-z
– volume: 13
  start-page: 385
  year: 2018
  ident: ref_25
  article-title: Sequential bayesian analysis of multivariate count data
  publication-title: Bayesian Anal.
  doi: 10.1214/17-BA1054
– ident: ref_3
– volume: 24
  start-page: 055801
  year: 2013
  ident: ref_5
  article-title: Detection of water-quality contamination events based on multi-sensor fusion using an extented dempster-shafer method
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/24/5/055801
– volume: 72
  start-page: 378
  year: 2017
  ident: ref_21
  article-title: Dual-domain calibration transfer using orthogonal projection
  publication-title: Appl. Spectrosc.
  doi: 10.1177/0003702817724164
– volume: 63
  start-page: 1153
  year: 2011
  ident: ref_12
  article-title: Identification of industrial wastewater by clustering wastewater treatment plant influent ultraviolet visible spectra
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2011.354
– volume: 24
  start-page: 12882
  year: 2017
  ident: ref_14
  article-title: Real-time detection of organic contamination events in water distribution systems by principal components analysis of ultraviolet spectral data
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-8907-7
– volume: 47
  start-page: 63
  year: 2003
  ident: ref_10
  article-title: A multivariate calibration procedure for uv/vis spectrometric quantification of organic matter and nitrate in wastewater
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2003.0086
– volume: 46
  start-page: 291
  year: 2002
  ident: ref_22
  article-title: A simple decomposition method for support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012427100071
– volume: 34
  start-page: 439
  year: 2013
  ident: ref_23
  article-title: An algorithm for training a large scale support vector machine for regression based on linear programming and decomposition methods
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2012.10.026
– volume: 70
  start-page: 1271
  year: 2014
  ident: ref_24
  article-title: Comparison of multivariate classification methods for contamination event detection in water distribution systems
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2014.02.140
– volume: 103
  start-page: 143
  year: 2007
  ident: ref_11
  article-title: An early warning monitoring system for quality control in a water distribution network
  publication-title: WIT Trans. Ecol. Environ.
– volume: 80
  start-page: 109
  year: 2015
  ident: ref_7
  article-title: A multivariate based event detection method and performance comparison with two baseline methods
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.05.013
– volume: 11
  start-page: 2973
  year: 2010
  ident: ref_19
  article-title: Semi-supervised novelty detection
  publication-title: J. Mach. Learn. Res.
– volume: 21
  start-page: 800
  year: 2006
  ident: ref_31
  article-title: Multi-instance learning from supervised view
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-006-0800-7
– volume: 117
  start-page: 61
  year: 2012
  ident: ref_20
  article-title: Pretreatments by means of orthogonal projections
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2012.02.002
– volume: 46
  start-page: 8212
  year: 2012
  ident: ref_26
  article-title: Event detection in water distribution systems from multivariate water quality time series
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3014024
– volume: 467
  start-page: 43
  year: 2010
  ident: ref_1
  article-title: The impacts of climate change on water resources and agriculture in China
  publication-title: Nature
  doi: 10.1038/nature09364
– volume: 8
  start-page: 283
  year: 1978
  ident: ref_28
  article-title: Basic principles of roc analysis
  publication-title: Semin. Nuclear Med.
  doi: 10.1016/S0001-2998(78)80014-2
– volume: 119
  start-page: 901
  year: 2015
  ident: ref_4
  article-title: Cloud-based event detection platform for water distribution networks using machine-learning algorithms
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2015.08.963
– volume: 23
  start-page: 17487
  year: 2015
  ident: ref_13
  article-title: Distribution water quality anomaly detection from UV optical sensor monitoring data by integrating principal component analysis with chi-square distribution
  publication-title: Opt. Express
  doi: 10.1364/OE.23.017487
– volume: 5
  start-page: 44
  year: 2018
  ident: ref_33
  article-title: A brief introduction to weakly supervised learning
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx106
– volume: 50
  start-page: 13
  year: 2004
  ident: ref_9
  article-title: Time-resolved delta spectrometry: A method to define alarm parameters from spectral data
  publication-title: Water Sci. Technol.
– ident: ref_8
  doi: 10.3390/s17030581
– volume: 129
  start-page: 27
  year: 2004
  ident: ref_2
  article-title: Safeguarding the security of public water supplies using early warning systems: A brief review
  publication-title: J. Contemp. Water Res. Educ.
  doi: 10.1111/j.1936-704X.2004.mp129001007.x
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_27
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 38
  start-page: 376
  year: 2018
  ident: ref_32
  article-title: Overhead ground wire detection by fusion global and local features and supervised learning method for a cable inspection robot
  publication-title: Sens. Rev.
  doi: 10.1108/SR-08-2017-0154
– volume: 37
  start-page: 1460
  year: 2017
  ident: ref_15
  article-title: Online detecting water quality anomaly from UV/Vis spectra using baseline correction and principal component analysis method
  publication-title: Spectrosc. Spectr. Anal.
– volume: 47
  start-page: 1899
  year: 2013
  ident: ref_30
  article-title: A dynamic thresholds scheme for contaminant event detection in water distribution systems
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.01.017
– volume: 161
  start-page: 385
  year: 2015
  ident: ref_6
  article-title: Performance evaluation for three pollution detection methods using data from a real contamination accident
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2015.07.026
– volume: 44
  start-page: 2405
  year: 2017
  ident: ref_17
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2307349
– ident: ref_16
  doi: 10.1109/I2MTC.2018.8409760
SSID ssj0000498850
Score 2.16771
Snippet A method that uses the ultraviolet-visible (UV-Vis) spectrum to detect organic contamination events in water distribution systems exhibits the advantages of...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1566
SubjectTerms Accuracy
Adaptability
Algorithms
artificial intelligence
Datasets
Drinking water
environmental factors
Methods
monitoring
Organic contaminants
rapid methods
regression analysis
Time series
ultraviolet-visible spectroscopy
water distribution
Water quality
Title Adaptive Detection Method for Organic Contamination Events in Water Distribution Systems Using the UV-Vis Spectrum Based on Semi-Supervised Learning
URI https://www.proquest.com/docview/2582930468
https://www.proquest.com/docview/2315279597
Volume 10
WOSCitedRecordID wos000451736300073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELZY2MNyAPaBKC_NIg5cLNIkTuIT4lHESktV8eiyp8ixHVQJ0tK08Ef4wcy4bgEJ7WVPkZKRFXnseXjG38fYLpVmkrLUvCxUwmMjEy7jwPJEFXFilEkDBzzf_Z2229nNjez4A7fat1VObaIz1Kav6Yx8PxQZeibM5rKDwQMn1iiqrnoKjU9sgZDKcJ0vHLXanYvZKQvGv1kmggmkUIT5_f5Tk9jVhUNFfOOI3tth51xOl__3t1bYkg8r4XCyDr6yOVt9Y4tvwAa_s-dDowZk3ODEjlwDVgXnjj8aMHCFyaVMDQRXpag_xgm0qB2yhl4FfzAoHcIJ4ex6iizwaOfg2g4AI0m47vJurwYitR8Nx_dwhD7SAIna-x6_HA_IMtErD-t6-4Ndn7aujs-452TgOgrFiGfCFCptFqaQtigjE5q4DBUmLUZhZGOtTHVhAqkxi9NNGyg0XxKNAs5QpESig2iVzVf9yq4xEJaKlqFK4tTERSykxlGaUpcYMwQiTBtsb6qgXHvAcuLNuMsxcSFd5jNdNtjOTHQwQen4SGhzqsLcb9Q6f9Vfg_2cfcYtRnUTVdn-GGUi4v6VmHqt_3uIDfYF46nMXVUMN9k8zrTdYp_146hXD7f92sRn59d55-8LcLry5A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgl44DeiMMAgkHixljpxEj8gtNFOm9ZVE9u6vQXHdlAllpamZeL_4O_gb-TOScqQEG974DU5OZLz-fydffcdwGu6momLwvAi1zGPrIq5igLHY51HsdU2Cbzw_HiYjEbp2Zk6XIOfbS0MpVW2PtE7ajs1dEa-KWSKOxNGc-n72VdOXaPodrVtoVHDYt99v8CQrXq318f_-0aIncHxh13edBXgJhRywVNpc530cpsrlxehFTYqhEbabTXuzc6pxOQ2UAbjENNzgcYFqBDW-OlQy9gEIY57DdajEF1MB9a3B6PDj6tTHeTbaSqDWsIoDFWwedGjbu7SqzBe2vj-9Pt-M9u5879Nw1243dBmtlXj_B6sufI-3LokpvgAfmxZPSPnzfpu4RPMSnbg-2MzJOasLjo1jOS4NOX_eIMBpXtWbFKyUyTdc9YnHeGmBRhr1NyZT6tgyJTZyZiPJxU7ovLU-fKcbSMHsIxM3fmEHy1n5HnpUSNb-_khnFzJtDyCTjkt3WNg0tGlrNBxlNgoj6QyOEpPmQI5USBF0oW3LSAy0wiyU1-QLxkGZoSdbIWdLrxamc5qFZK_GW20kMkaR1Rlv_HShZer1-hC6F5Il266RJuQehsrDC2f_HuIF3Bj9_hgmA33RvtP4SZyx9SXZYoN6OCsu2dw3XxbTKr582ZdMPh01Rj8BRMATzI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDaHxwG9EYYBBIPFiNU3iJH5AaNBVVNuqSmNlPAXHdqZKLC1Ny8T_wV_DX8ed45QhId72wGtysiLn89139vk7gBd0NJOUpeZloRIeG5lwGQeWJ6qIE6NMGjjh-clBOhplJydyvAE_27swVFbZ-kTnqM1M0x55NxQZRibM5rJu6csixv3Bm_lXTh2k6KS1bafRQGTffj_H9K1-Pezjv34ZhoO9D-_ec99hgOsoFEueCVOotFeYQtqijExo4jJUSMGNwjhtrUx1YQKpMSfRPRsoXIwSIY6fESmR6CDCca_AFlLyCBO_rfHwcPxpvcOD3DvLRNDIGUWRDLrnPersLpwi44Ug-GcMcIFtcPN_npJbcMPTabbb4P82bNjqDly_ILJ4F37sGjUnp876dukKzyp26PpmMyTsrLmMqhnJdCmqC3IGe1QGWrNpxT4iGV-wPukL-9ZgzKu8M1duwZBBs-MJn0xrdkTXVherM_YWuYFhZGrPpvxoNSePTI-8nO3pPTi-lGm5D5vVrLIPgAlLh7WhSuLUxEUspMZRelKXyJUCEaYdeNWCI9deqJ36hXzJMWEjHOVrHHXg-dp03qiT_M1op4VP7h1Unf_GTgeerV-ja6HzIlXZ2QptIup5LDHlfPjvIZ7CNQRefjAc7T-CbaSUmbutGe7AJk66fQxX9bfltF488UuEwefLhuAv1eBYJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Detection+Method+for+Organic+Contamination+Events+in+Water+Distribution+Systems+Using+the+UV-Vis+Spectrum+Based+on+Semi-Supervised+Learning&rft.jtitle=Water+%28Basel%29&rft.au=Yu%2C+Qiaojun&rft.au=Yin%2C+Hang&rft.au=Wang%2C+Ke&rft.au=Dong%2C+Hui&rft.date=2018-11-02&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=10&rft.issue=11&rft_id=info:doi/10.3390%2Fw10111566&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon