Adaptive Detection Method for Organic Contamination Events in Water Distribution Systems Using the UV-Vis Spectrum Based on Semi-Supervised Learning

A method that uses the ultraviolet-visible (UV-Vis) spectrum to detect organic contamination events in water distribution systems exhibits the advantages of rapid detection, low cost, and no need for reagents. The speed, accuracy, and comprehensive analysis of such a method meet the requirements for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Water (Basel) Ročník 10; číslo 11; s. 1566
Hlavní autoři: Yu, Qiaojun, Yin, Hang, Wang, Ke, Dong, Hui, Hou, Dibo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 02.11.2018
Témata:
ISSN:2073-4441, 2073-4441
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A method that uses the ultraviolet-visible (UV-Vis) spectrum to detect organic contamination events in water distribution systems exhibits the advantages of rapid detection, low cost, and no need for reagents. The speed, accuracy, and comprehensive analysis of such a method meet the requirements for online water quality monitoring. However, the UV-Vis spectrum is easily disturbed by environmental factors that cause fluctuations of the spectrum and result in false alarms. This study proposes an adaptive method for detecting organic contamination events in water distribution systems that uses the UV-Vis spectrum based on a semi-supervised learning model. This method modifies the baseline using dynamic orthogonal projection correction and adjusts the support vector regression model in real time. Thus, an adaptive online anomaly detection model that maximizes the use of unlabeled data is obtained. Experimental results demonstrate that the proposed method is adaptive to baseline drift and exhibits good performance in detecting organic contamination events in water distribution systems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2073-4441
2073-4441
DOI:10.3390/w10111566