The Anosov–Katok method and pseudo-rotations in symplectic dynamics

We prove that toric symplectic manifolds admit Hamiltonian pseudo-rotations with a finite, and in a sense minimal, number of ergodic measures. The set of ergodic measures of these pseudo-rotations consists of the measure induced by the symplectic volume form and the Dirac measures supported at the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fixed point theory and applications Jg. 24; H. 2
Hauptverfasser: Le Roux, Frédéric, Seyfaddini, Sobhan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.06.2022
Springer Verlag
Schlagworte:
ISSN:1661-7738, 1661-7746
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that toric symplectic manifolds admit Hamiltonian pseudo-rotations with a finite, and in a sense minimal, number of ergodic measures. The set of ergodic measures of these pseudo-rotations consists of the measure induced by the symplectic volume form and the Dirac measures supported at the fixed points of the torus action. Our construction relies on the conjugation method of Anosov and Katok.
ISSN:1661-7738
1661-7746
DOI:10.1007/s11784-022-00955-8