Symmetric Boundary-Enhanced U-Net with Mamba Architecture for Glomerular Segmentation in Renal Pathological Images
Accurate glomerular segmentation in renal pathological images is a key challenge for chronic kidney disease diagnosis and assessment. Due to the high visual similarity between pathological glomeruli and surrounding tissues in color, texture, and morphology, significant “camouflage phenomena” exist,...
Uložené v:
| Vydané v: | Symmetry (Basel) Ročník 17; číslo 9; s. 1506 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.09.2025
|
| Predmet: | |
| ISSN: | 2073-8994, 2073-8994 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Accurate glomerular segmentation in renal pathological images is a key challenge for chronic kidney disease diagnosis and assessment. Due to the high visual similarity between pathological glomeruli and surrounding tissues in color, texture, and morphology, significant “camouflage phenomena” exist, leading to boundary identification difficulties. To address this problem, we propose BM-UNet, a novel segmentation framework that embeds boundary guidance mechanisms into a Mamba architecture with a symmetric encoder–decoder design. The framework enhances feature transmission through explicit boundary detection, incorporating four core modules designed for key challenges in pathological image segmentation. The Multi-scale Adaptive Fusion (MAF) module processes irregular tissue morphology, the Hybrid Boundary Detection (HBD) module handles boundary feature extraction, the Boundary-guided Attention (BGA) module achieves boundary-aware feature refinement, and the Mamba-based Fused Decoder Block (MFDB) completes boundary-preserving reconstruction. By introducing explicit boundary supervision mechanisms, the framework achieves significant segmentation accuracy improvements while maintaining linear computational complexity. Validation on the KPIs2024 glomerular dataset and HuBMAP renal tissue samples demonstrates that BM-UNet achieves a 92.4–95.3% mean Intersection over Union across different CKD pathological conditions, with a 4.57% improvement over the Mamba baseline and a processing speed of 113.7 FPS. |
|---|---|
| AbstractList | Accurate glomerular segmentation in renal pathological images is a key challenge for chronic kidney disease diagnosis and assessment. Due to the high visual similarity between pathological glomeruli and surrounding tissues in color, texture, and morphology, significant “camouflage phenomena” exist, leading to boundary identification difficulties. To address this problem, we propose BM-UNet, a novel segmentation framework that embeds boundary guidance mechanisms into a Mamba architecture with a symmetric encoder–decoder design. The framework enhances feature transmission through explicit boundary detection, incorporating four core modules designed for key challenges in pathological image segmentation. The Multi-scale Adaptive Fusion (MAF) module processes irregular tissue morphology, the Hybrid Boundary Detection (HBD) module handles boundary feature extraction, the Boundary-guided Attention (BGA) module achieves boundary-aware feature refinement, and the Mamba-based Fused Decoder Block (MFDB) completes boundary-preserving reconstruction. By introducing explicit boundary supervision mechanisms, the framework achieves significant segmentation accuracy improvements while maintaining linear computational complexity. Validation on the KPIs2024 glomerular dataset and HuBMAP renal tissue samples demonstrates that BM-UNet achieves a 92.4–95.3% mean Intersection over Union across different CKD pathological conditions, with a 4.57% improvement over the Mamba baseline and a processing speed of 113.7 FPS. |
| Audience | Academic |
| Author | Zhang, Shengnan Tian, Ronghui Cui, Xinming Ma, Guangkun |
| Author_xml | – sequence: 1 givenname: Shengnan surname: Zhang fullname: Zhang, Shengnan – sequence: 2 givenname: Xinming orcidid: 0009-0007-5571-7104 surname: Cui fullname: Cui, Xinming – sequence: 3 givenname: Guangkun surname: Ma fullname: Ma, Guangkun – sequence: 4 givenname: Ronghui surname: Tian fullname: Tian, Ronghui |
| BookMark | eNptUU1r3DAQFSGBpJuc-gcEPRZvJcuS7OM2pEkgTUI-zkYZj3e1WFIqyZT991HYQlPozGE-eG9mmPeJHPrgkZDPnC2F6Ni3tHNcs45Lpg7ISc20qNquaw4_5MfkLKUtKyaZbBQ7IfFx5xzmaIF-D7MfTNxVF35jPOBAn6tbzPS3zRv607gXQ1cRNjYj5DkiHUOkl1NwGOfJRPqIa4c-m2yDp9bTB_Rmovcmb8IU1hZKce3MGtMpORrNlPDsT1yQ5x8XT-dX1c3d5fX56qYCUctcSV0DShh43YgWFWjeGTCdYkbLQWOrFH8Z62HQI0iFbQ2qEV0toe2GkWnFxYJ82c99jeHXjCn32zDHclTqy4JGSSG5-Itamwl768eQowFnE_SrVmpV_lmrglr-B1V8QGeh6DDa0v-H8HVPgBhSijj2r9G68t2es_5drv6DXOINzH-Ivw |
| Cites_doi | 10.1038/s41592-020-01008-z 10.1007/978-3-031-25063-7 10.1109/CVPR42600.2020.00285 10.1016/j.compbiomed.2023.107470 10.1109/TPAMI.2021.3085766 10.1016/j.ekir.2019.04.008 10.1109/ACCESS.2023.3320064 10.1007/978-3-319-24553-9 10.1109/CVPR46437.2021.00866 10.1038/s41586-019-1629-x 10.1109/CVPR46437.2021.01142 10.1016/j.patcog.2021.108414 10.1038/s41581-020-0321-6 10.1007/s11633-022-1371-y 10.1007/s44267-023-00019-6 10.1016/j.kisu.2021.11.003 10.1109/CVPR52688.2022.01167 10.1007/978-3-030-01234-2_49 10.1016/j.cmpb.2019.105273 10.3934/mbe.2023007 10.1016/j.compmedimag.2021.101865 10.1109/ICASSP40776.2020.9053405 10.1109/CVPR52688.2022.00220 10.3390/rs12182932 10.1109/CVPR52729.2023.02111 10.24963/ijcai.2022/186 10.1016/j.media.2023.102802 10.1016/j.media.2022.102395 10.1109/CVPR.2017.660 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.3390/sym17091506 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection SciTech Premium Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2073-8994 |
| ExternalDocumentID | A857691526 10_3390_sym17091506 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c325t-572ce5cd12438e6c719aca960a75d7e8661bf2dd7fc56e82c643925c89df07613 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001580946900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-8994 |
| IngestDate | Mon Oct 06 17:20:19 EDT 2025 Tue Nov 11 10:46:20 EST 2025 Tue Nov 04 18:09:15 EST 2025 Sat Nov 29 07:08:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c325t-572ce5cd12438e6c719aca960a75d7e8661bf2dd7fc56e82c643925c89df07613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0007-5571-7104 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/3254653513?pq-origsite=%requestingapplication% |
| PQID | 3254653513 |
| PQPubID | 2032326 |
| ParticipantIDs | proquest_journals_3254653513 gale_infotracmisc_A857691526 gale_infotracacademiconefile_A857691526 crossref_primary_10_3390_sym17091506 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Xie (ref_20) 2021; 34 Zheng (ref_31) 2024; 132 ref_14 ref_36 Kannan (ref_21) 2019; 4 ref_35 ref_34 ref_11 ref_33 ref_10 ref_32 ref_30 Kovesdy (ref_1) 2022; 12 ref_19 ref_18 ref_17 ref_16 Barisoni (ref_2) 2020; 16 Dao (ref_13) 2022; 35 ref_15 ref_37 Isensee (ref_4) 2021; 18 Fan (ref_27) 2022; 44 Yan (ref_26) 2023; 11 Feng (ref_25) 2023; 20 ref_24 ref_23 ref_22 ref_3 Ji (ref_12) 2022; 19 ref_29 ref_28 ref_9 ref_8 ref_5 ref_7 ref_6 |
| References_xml | – volume: 18 start-page: 203 year: 2021 ident: ref_4 article-title: nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods doi: 10.1038/s41592-020-01008-z – ident: ref_7 – ident: ref_19 doi: 10.1007/978-3-031-25063-7 – ident: ref_10 doi: 10.1109/CVPR42600.2020.00285 – ident: ref_22 doi: 10.1016/j.compbiomed.2023.107470 – volume: 44 start-page: 6024 year: 2022 ident: ref_27 article-title: Concealed object detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3085766 – volume: 35 start-page: 16344 year: 2022 ident: ref_13 article-title: FlashAttention: Fast and memory-efficient exact attention with IO-awareness publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_34 – volume: 4 start-page: 955 year: 2019 ident: ref_21 article-title: Segmentation of glomeruli within trichrome images using deep learning publication-title: Kidney Int. Rep. doi: 10.1016/j.ekir.2019.04.008 – volume: 11 start-page: 105892 year: 2023 ident: ref_26 article-title: Self reinforcing multi-class transformer for kidney glomerular basement membrane segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3320064 – ident: ref_15 doi: 10.1007/978-3-319-24553-9 – volume: 34 start-page: 12077 year: 2021 ident: ref_20 article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_28 doi: 10.1109/CVPR46437.2021.00866 – volume: 132 start-page: 2920 year: 2024 ident: ref_31 article-title: Bilateral reference for high-resolution dichotomous image segmentation publication-title: Int. J. Comput. Vis. – ident: ref_37 doi: 10.1038/s41586-019-1629-x – ident: ref_11 doi: 10.1109/CVPR46437.2021.01142 – ident: ref_32 doi: 10.1016/j.patcog.2021.108414 – ident: ref_14 – volume: 16 start-page: 669 year: 2020 ident: ref_2 article-title: Digital pathology and computational image analysis in nephropathology publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-020-0321-6 – ident: ref_35 – volume: 19 start-page: 531 year: 2022 ident: ref_12 article-title: Video polyp segmentation: A deep learning perspective publication-title: Mach. Intell. Res. doi: 10.1007/s11633-022-1371-y – ident: ref_3 doi: 10.1007/s44267-023-00019-6 – volume: 12 start-page: 7 year: 2022 ident: ref_1 article-title: Epidemiology of chronic kidney disease: An update 2022 publication-title: Kidney Int. Suppl. doi: 10.1016/j.kisu.2021.11.003 – ident: ref_18 doi: 10.1109/CVPR52688.2022.01167 – ident: ref_5 doi: 10.1007/978-3-030-01234-2_49 – ident: ref_23 doi: 10.1016/j.cmpb.2019.105273 – volume: 20 start-page: 128 year: 2023 ident: ref_25 article-title: ConvWin-UNet: UNet-like hierarchical vision transformer combined with convolution for medical image segmentation publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2023007 – ident: ref_24 doi: 10.1016/j.compmedimag.2021.101865 – ident: ref_16 doi: 10.1109/ICASSP40776.2020.9053405 – ident: ref_29 doi: 10.1109/CVPR52688.2022.00220 – ident: ref_36 – ident: ref_9 doi: 10.3390/rs12182932 – ident: ref_33 doi: 10.1109/CVPR52729.2023.02111 – ident: ref_30 doi: 10.24963/ijcai.2022/186 – ident: ref_6 doi: 10.1016/j.media.2023.102802 – ident: ref_8 doi: 10.1016/j.media.2022.102395 – ident: ref_17 doi: 10.1109/CVPR.2017.660 |
| SSID | ssj0000505460 |
| Score | 2.3401992 |
| Snippet | Accurate glomerular segmentation in renal pathological images is a key challenge for chronic kidney disease diagnosis and assessment. Due to the high visual... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1506 |
| SubjectTerms | Accuracy Ambiguity Chronic kidney failure Deep learning Diagnosis Efficiency Feature extraction Image processing Image reconstruction Image segmentation Kidney diseases Medical imaging Medical imaging equipment Modules Morphology Pathology Semantics |
| Title | Symmetric Boundary-Enhanced U-Net with Mamba Architecture for Glomerular Segmentation in Renal Pathological Images |
| URI | https://www.proquest.com/docview/3254653513 |
| Volume | 17 |
| WOSCitedRecordID | wos001580946900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLeg5cAFGGzaYKt8mAQ7WG1sXCcn1E0d7LAqWjdpnCLHftkmkXQkAakX_nbeS93RSYgTl1xsyS96fp9-7_0YO4SRgljZkUg0YIAS51rkeZEL5ROfJ-CscbYDmzCzWXx9naShPboJZZVrndgp6tW0Z6rbRiU89AtHGfOhojHuWulIfbr_LghDit5aA6DGU9anwVujHuunZ-fp14ecC6G2fRyPVm16CqP9YbMsI4MmUxPi0YZh-rt67mzO6cv_S-0r9iL4nnyyuixb7AlUr9lWkO6GfwgjqI_esHq-LEvC2nL8uMNdqpdiWt121QL8Ssyg5ZTA5ee2zC2fbDxGcHSC-edvixJqKnDlc7gpQ3tTxe8qfgFEQmrbB63Lz0rUac02uzqdXp58EQGdQTj8n1ZoIx1o59FBUDGMnYkS6ywGRNZobyBGw58X0ntTOD2GWDryfaR2ceILSp6oHdarFhXsMi69NJGLClsoDNhAJzAmOA6IrLQOHaI9drhmTXa_GsKRYfBCHMw2OLjH3hPbMhLNtkZiQocBHkJDrrJJjMEV7pS4c__RThQp93h5zdUsiHST_WHi238vv2PPJYEEd4Vo-6zX1j_ggD1zP9u7ph6w_vF0ll4MqMh0Tt9f00G4p78BF5r37g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJcKOVDlBbwoQg4RE3sepMcKrRAS1ftrla0ldpTcOwJVCLZkqSg_VP8RmaySdlKiFsPnG05Tvwyb8YezwPYRF9hpIzvxRopQIlS7aVplnrKxS6N0ZrQmkZsIhyPo9PTeLIEv7q7MJxW2dnExlC7qeU98i3Fhdu10oF6e_HdY9UoPl3tJDTmsDjA2U8K2aqd4Qda35dS7u0ev9_3WlUBz9IYtadDaVFbR8SmIuzbMIiNNeTIm1C7ECMirDSTzoWZ1X2MpGXOltpGscs46Fc07i1Y3iaw-z1YngxHk7OrXR3Whdvu-_OLgErF_lY1y4OQSFmzptIC9f2dABpW21v5377HfbjX-s9iMAf8Kixh8QBWWwtViddtGe03D6E8muU564VZ8a7Rjipn3m7xtcl4ECfeGGvBm9BiZPLUiMHCgYogR158_DbNseQkXXGEX_L2ilYhzgvxCXkKE1NfMYcY5mSXq0dwciPv_hh6xbTAJyCkk2Fgg8xkioJO1DH2WVIEAyONJaduDTa7xU8u5oVEEgrAGCPJAkbW4BUDI2HzUpc0mfaWBD2EC3Ulg4gCROopqefGtZ5kFuz15g43SWuWquQPaJ7-u_kF3Nk_Hh0mh8PxwTrclSx63CTWbUCvLi_xGdy2P-rzqnze_gECPt80yH4DhU9FIw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUK9AOWhFgr4UAQcot3YeJ0cKrSlu7AqRKuWSr0Fx5lAJZItSaDav8avYyablK2EuPXA2ZbjJJ_n5Zn5AHZxoDBQduCFGslBCRLtJUmWeCoN0yREZ42zDdmEiaLg9DScrcGvrhaG0yo7mdgI6nTuOEbeV9y4XSvtq37WpkXMDiZvzr97zCDFN60dncYSIoe4uCD3rdqbHtC_fi7lZPzp7XuvZRjwHK1Xe9pIh9qlpORUgENn_NA6S0a9NTo1GJDySjKZpiZzeoiBdKy_pXZBmGYcAFC07g1YN4qcnh6s74-j2dFlhIc54l4PB8uiQKXCQb9a5L4hBa2ZX2lFDf5dGTQabnLnf_42d-F2a1eL0fIgbMIaFvdgs5VclXjZttd-dR_K40WeM4-YE_sNp1S58MbF1yYTQpx4EdaCg9Pio80TK0YrFy2CDHzx7ts8x5KTd8Uxfsnb0q1CnBXiCHkLM1tfahQxzUleVw_g5Fre_SH0inmBWyBkKo3v_MxmipxR1CEOmWoEfSutI2NvG3Y7IMTnywYjMTlmjJd4BS_b8IJBErPYqUvaTFs9QQ_hBl7xKCDHkWZKmrlzZSaJC3d1uMNQ3IqrKv4DoEf_Hn4GtwhZ8YdpdPgYNiRzITf5djvQq8sf-ARuup_1WVU-bQ-DgM_XjbHf6MlNvQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symmetric+Boundary-Enhanced+U-Net+with+Mamba+Architecture+for+Glomerular+Segmentation+in+Renal+Pathological+Images&rft.jtitle=Symmetry+%28Basel%29&rft.au=Zhang%2C+Shengnan&rft.au=Cui%2C+Xinming&rft.au=Ma%2C+Guangkun&rft.au=Tian%2C+Ronghui&rft.date=2025-09-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=17&rft.issue=9&rft.spage=1506&rft_id=info:doi/10.3390%2Fsym17091506&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym17091506 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |