Symmetric Boundary-Enhanced U-Net with Mamba Architecture for Glomerular Segmentation in Renal Pathological Images

Accurate glomerular segmentation in renal pathological images is a key challenge for chronic kidney disease diagnosis and assessment. Due to the high visual similarity between pathological glomeruli and surrounding tissues in color, texture, and morphology, significant “camouflage phenomena” exist,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Symmetry (Basel) Ročník 17; číslo 9; s. 1506
Hlavní autori: Zhang, Shengnan, Cui, Xinming, Ma, Guangkun, Tian, Ronghui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.09.2025
Predmet:
ISSN:2073-8994, 2073-8994
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Accurate glomerular segmentation in renal pathological images is a key challenge for chronic kidney disease diagnosis and assessment. Due to the high visual similarity between pathological glomeruli and surrounding tissues in color, texture, and morphology, significant “camouflage phenomena” exist, leading to boundary identification difficulties. To address this problem, we propose BM-UNet, a novel segmentation framework that embeds boundary guidance mechanisms into a Mamba architecture with a symmetric encoder–decoder design. The framework enhances feature transmission through explicit boundary detection, incorporating four core modules designed for key challenges in pathological image segmentation. The Multi-scale Adaptive Fusion (MAF) module processes irregular tissue morphology, the Hybrid Boundary Detection (HBD) module handles boundary feature extraction, the Boundary-guided Attention (BGA) module achieves boundary-aware feature refinement, and the Mamba-based Fused Decoder Block (MFDB) completes boundary-preserving reconstruction. By introducing explicit boundary supervision mechanisms, the framework achieves significant segmentation accuracy improvements while maintaining linear computational complexity. Validation on the KPIs2024 glomerular dataset and HuBMAP renal tissue samples demonstrates that BM-UNet achieves a 92.4–95.3% mean Intersection over Union across different CKD pathological conditions, with a 4.57% improvement over the Mamba baseline and a processing speed of 113.7 FPS.
AbstractList Accurate glomerular segmentation in renal pathological images is a key challenge for chronic kidney disease diagnosis and assessment. Due to the high visual similarity between pathological glomeruli and surrounding tissues in color, texture, and morphology, significant “camouflage phenomena” exist, leading to boundary identification difficulties. To address this problem, we propose BM-UNet, a novel segmentation framework that embeds boundary guidance mechanisms into a Mamba architecture with a symmetric encoder–decoder design. The framework enhances feature transmission through explicit boundary detection, incorporating four core modules designed for key challenges in pathological image segmentation. The Multi-scale Adaptive Fusion (MAF) module processes irregular tissue morphology, the Hybrid Boundary Detection (HBD) module handles boundary feature extraction, the Boundary-guided Attention (BGA) module achieves boundary-aware feature refinement, and the Mamba-based Fused Decoder Block (MFDB) completes boundary-preserving reconstruction. By introducing explicit boundary supervision mechanisms, the framework achieves significant segmentation accuracy improvements while maintaining linear computational complexity. Validation on the KPIs2024 glomerular dataset and HuBMAP renal tissue samples demonstrates that BM-UNet achieves a 92.4–95.3% mean Intersection over Union across different CKD pathological conditions, with a 4.57% improvement over the Mamba baseline and a processing speed of 113.7 FPS.
Audience Academic
Author Zhang, Shengnan
Tian, Ronghui
Cui, Xinming
Ma, Guangkun
Author_xml – sequence: 1
  givenname: Shengnan
  surname: Zhang
  fullname: Zhang, Shengnan
– sequence: 2
  givenname: Xinming
  orcidid: 0009-0007-5571-7104
  surname: Cui
  fullname: Cui, Xinming
– sequence: 3
  givenname: Guangkun
  surname: Ma
  fullname: Ma, Guangkun
– sequence: 4
  givenname: Ronghui
  surname: Tian
  fullname: Tian, Ronghui
BookMark eNptUU1r3DAQFSGBpJuc-gcEPRZvJcuS7OM2pEkgTUI-zkYZj3e1WFIqyZT991HYQlPozGE-eG9mmPeJHPrgkZDPnC2F6Ni3tHNcs45Lpg7ISc20qNquaw4_5MfkLKUtKyaZbBQ7IfFx5xzmaIF-D7MfTNxVF35jPOBAn6tbzPS3zRv607gXQ1cRNjYj5DkiHUOkl1NwGOfJRPqIa4c-m2yDp9bTB_Rmovcmb8IU1hZKce3MGtMpORrNlPDsT1yQ5x8XT-dX1c3d5fX56qYCUctcSV0DShh43YgWFWjeGTCdYkbLQWOrFH8Z62HQI0iFbQ2qEV0toe2GkWnFxYJ82c99jeHXjCn32zDHclTqy4JGSSG5-Itamwl768eQowFnE_SrVmpV_lmrglr-B1V8QGeh6DDa0v-H8HVPgBhSijj2r9G68t2es_5drv6DXOINzH-Ivw
Cites_doi 10.1038/s41592-020-01008-z
10.1007/978-3-031-25063-7
10.1109/CVPR42600.2020.00285
10.1016/j.compbiomed.2023.107470
10.1109/TPAMI.2021.3085766
10.1016/j.ekir.2019.04.008
10.1109/ACCESS.2023.3320064
10.1007/978-3-319-24553-9
10.1109/CVPR46437.2021.00866
10.1038/s41586-019-1629-x
10.1109/CVPR46437.2021.01142
10.1016/j.patcog.2021.108414
10.1038/s41581-020-0321-6
10.1007/s11633-022-1371-y
10.1007/s44267-023-00019-6
10.1016/j.kisu.2021.11.003
10.1109/CVPR52688.2022.01167
10.1007/978-3-030-01234-2_49
10.1016/j.cmpb.2019.105273
10.3934/mbe.2023007
10.1016/j.compmedimag.2021.101865
10.1109/ICASSP40776.2020.9053405
10.1109/CVPR52688.2022.00220
10.3390/rs12182932
10.1109/CVPR52729.2023.02111
10.24963/ijcai.2022/186
10.1016/j.media.2023.102802
10.1016/j.media.2022.102395
10.1109/CVPR.2017.660
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.3390/sym17091506
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID A857691526
10_3390_sym17091506
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c325t-572ce5cd12438e6c719aca960a75d7e8661bf2dd7fc56e82c643925c89df07613
IEDL.DBID PIMPY
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001580946900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-8994
IngestDate Mon Oct 06 17:20:19 EDT 2025
Tue Nov 11 10:46:20 EST 2025
Tue Nov 04 18:09:15 EST 2025
Sat Nov 29 07:08:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-572ce5cd12438e6c719aca960a75d7e8661bf2dd7fc56e82c643925c89df07613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-5571-7104
OpenAccessLink https://www.proquest.com/publiccontent/docview/3254653513?pq-origsite=%requestingapplication%
PQID 3254653513
PQPubID 2032326
ParticipantIDs proquest_journals_3254653513
gale_infotracmisc_A857691526
gale_infotracacademiconefile_A857691526
crossref_primary_10_3390_sym17091506
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Xie (ref_20) 2021; 34
Zheng (ref_31) 2024; 132
ref_14
ref_36
Kannan (ref_21) 2019; 4
ref_35
ref_34
ref_11
ref_33
ref_10
ref_32
ref_30
Kovesdy (ref_1) 2022; 12
ref_19
ref_18
ref_17
ref_16
Barisoni (ref_2) 2020; 16
Dao (ref_13) 2022; 35
ref_15
ref_37
Isensee (ref_4) 2021; 18
Fan (ref_27) 2022; 44
Yan (ref_26) 2023; 11
Feng (ref_25) 2023; 20
ref_24
ref_23
ref_22
ref_3
Ji (ref_12) 2022; 19
ref_29
ref_28
ref_9
ref_8
ref_5
ref_7
ref_6
References_xml – volume: 18
  start-page: 203
  year: 2021
  ident: ref_4
  article-title: nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– ident: ref_7
– ident: ref_19
  doi: 10.1007/978-3-031-25063-7
– ident: ref_10
  doi: 10.1109/CVPR42600.2020.00285
– ident: ref_22
  doi: 10.1016/j.compbiomed.2023.107470
– volume: 44
  start-page: 6024
  year: 2022
  ident: ref_27
  article-title: Concealed object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3085766
– volume: 35
  start-page: 16344
  year: 2022
  ident: ref_13
  article-title: FlashAttention: Fast and memory-efficient exact attention with IO-awareness
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_34
– volume: 4
  start-page: 955
  year: 2019
  ident: ref_21
  article-title: Segmentation of glomeruli within trichrome images using deep learning
  publication-title: Kidney Int. Rep.
  doi: 10.1016/j.ekir.2019.04.008
– volume: 11
  start-page: 105892
  year: 2023
  ident: ref_26
  article-title: Self reinforcing multi-class transformer for kidney glomerular basement membrane segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3320064
– ident: ref_15
  doi: 10.1007/978-3-319-24553-9
– volume: 34
  start-page: 12077
  year: 2021
  ident: ref_20
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_28
  doi: 10.1109/CVPR46437.2021.00866
– volume: 132
  start-page: 2920
  year: 2024
  ident: ref_31
  article-title: Bilateral reference for high-resolution dichotomous image segmentation
  publication-title: Int. J. Comput. Vis.
– ident: ref_37
  doi: 10.1038/s41586-019-1629-x
– ident: ref_11
  doi: 10.1109/CVPR46437.2021.01142
– ident: ref_32
  doi: 10.1016/j.patcog.2021.108414
– ident: ref_14
– volume: 16
  start-page: 669
  year: 2020
  ident: ref_2
  article-title: Digital pathology and computational image analysis in nephropathology
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-020-0321-6
– ident: ref_35
– volume: 19
  start-page: 531
  year: 2022
  ident: ref_12
  article-title: Video polyp segmentation: A deep learning perspective
  publication-title: Mach. Intell. Res.
  doi: 10.1007/s11633-022-1371-y
– ident: ref_3
  doi: 10.1007/s44267-023-00019-6
– volume: 12
  start-page: 7
  year: 2022
  ident: ref_1
  article-title: Epidemiology of chronic kidney disease: An update 2022
  publication-title: Kidney Int. Suppl.
  doi: 10.1016/j.kisu.2021.11.003
– ident: ref_18
  doi: 10.1109/CVPR52688.2022.01167
– ident: ref_5
  doi: 10.1007/978-3-030-01234-2_49
– ident: ref_23
  doi: 10.1016/j.cmpb.2019.105273
– volume: 20
  start-page: 128
  year: 2023
  ident: ref_25
  article-title: ConvWin-UNet: UNet-like hierarchical vision transformer combined with convolution for medical image segmentation
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2023007
– ident: ref_24
  doi: 10.1016/j.compmedimag.2021.101865
– ident: ref_16
  doi: 10.1109/ICASSP40776.2020.9053405
– ident: ref_29
  doi: 10.1109/CVPR52688.2022.00220
– ident: ref_36
– ident: ref_9
  doi: 10.3390/rs12182932
– ident: ref_33
  doi: 10.1109/CVPR52729.2023.02111
– ident: ref_30
  doi: 10.24963/ijcai.2022/186
– ident: ref_6
  doi: 10.1016/j.media.2023.102802
– ident: ref_8
  doi: 10.1016/j.media.2022.102395
– ident: ref_17
  doi: 10.1109/CVPR.2017.660
SSID ssj0000505460
Score 2.3401992
Snippet Accurate glomerular segmentation in renal pathological images is a key challenge for chronic kidney disease diagnosis and assessment. Due to the high visual...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Index Database
StartPage 1506
SubjectTerms Accuracy
Ambiguity
Chronic kidney failure
Deep learning
Diagnosis
Efficiency
Feature extraction
Image processing
Image reconstruction
Image segmentation
Kidney diseases
Medical imaging
Medical imaging equipment
Modules
Morphology
Pathology
Semantics
Title Symmetric Boundary-Enhanced U-Net with Mamba Architecture for Glomerular Segmentation in Renal Pathological Images
URI https://www.proquest.com/docview/3254653513
Volume 17
WOSCitedRecordID wos001580946900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLeg5cAFGGzaYKt8mAQ7WG1sXCcn1E0d7LAqWjdpnCLHftkmkXQkAakX_nbeS93RSYgTl1xsyS96fp9-7_0YO4SRgljZkUg0YIAS51rkeZEL5ROfJ-CscbYDmzCzWXx9naShPboJZZVrndgp6tW0Z6rbRiU89AtHGfOhojHuWulIfbr_LghDit5aA6DGU9anwVujHuunZ-fp14ecC6G2fRyPVm16CqP9YbMsI4MmUxPi0YZh-rt67mzO6cv_S-0r9iL4nnyyuixb7AlUr9lWkO6GfwgjqI_esHq-LEvC2nL8uMNdqpdiWt121QL8Ssyg5ZTA5ee2zC2fbDxGcHSC-edvixJqKnDlc7gpQ3tTxe8qfgFEQmrbB63Lz0rUac02uzqdXp58EQGdQTj8n1ZoIx1o59FBUDGMnYkS6ywGRNZobyBGw58X0ntTOD2GWDryfaR2ceILSp6oHdarFhXsMi69NJGLClsoDNhAJzAmOA6IrLQOHaI9drhmTXa_GsKRYfBCHMw2OLjH3hPbMhLNtkZiQocBHkJDrrJJjMEV7pS4c__RThQp93h5zdUsiHST_WHi238vv2PPJYEEd4Vo-6zX1j_ggD1zP9u7ph6w_vF0ll4MqMh0Tt9f00G4p78BF5r37g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJcKOVDlBbwoQg4RE3sepMcKrRAS1ftrla0ldpTcOwJVCLZkqSg_VP8RmaySdlKiFsPnG05Tvwyb8YezwPYRF9hpIzvxRopQIlS7aVplnrKxS6N0ZrQmkZsIhyPo9PTeLIEv7q7MJxW2dnExlC7qeU98i3Fhdu10oF6e_HdY9UoPl3tJDTmsDjA2U8K2aqd4Qda35dS7u0ev9_3WlUBz9IYtadDaVFbR8SmIuzbMIiNNeTIm1C7ECMirDSTzoWZ1X2MpGXOltpGscs46Fc07i1Y3iaw-z1YngxHk7OrXR3Whdvu-_OLgErF_lY1y4OQSFmzptIC9f2dABpW21v5377HfbjX-s9iMAf8Kixh8QBWWwtViddtGe03D6E8muU564VZ8a7Rjipn3m7xtcl4ECfeGGvBm9BiZPLUiMHCgYogR158_DbNseQkXXGEX_L2ilYhzgvxCXkKE1NfMYcY5mSXq0dwciPv_hh6xbTAJyCkk2Fgg8xkioJO1DH2WVIEAyONJaduDTa7xU8u5oVEEgrAGCPJAkbW4BUDI2HzUpc0mfaWBD2EC3Ulg4gCROopqefGtZ5kFuz15g43SWuWquQPaJ7-u_kF3Nk_Hh0mh8PxwTrclSx63CTWbUCvLi_xGdy2P-rzqnze_gECPt80yH4DhU9FIw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUK9AOWhFgr4UAQcot3YeJ0cKrSlu7AqRKuWSr0Fx5lAJZItSaDav8avYyablK2EuPXA2ZbjJJ_n5Zn5AHZxoDBQduCFGslBCRLtJUmWeCoN0yREZ42zDdmEiaLg9DScrcGvrhaG0yo7mdgI6nTuOEbeV9y4XSvtq37WpkXMDiZvzr97zCDFN60dncYSIoe4uCD3rdqbHtC_fi7lZPzp7XuvZRjwHK1Xe9pIh9qlpORUgENn_NA6S0a9NTo1GJDySjKZpiZzeoiBdKy_pXZBmGYcAFC07g1YN4qcnh6s74-j2dFlhIc54l4PB8uiQKXCQb9a5L4hBa2ZX2lFDf5dGTQabnLnf_42d-F2a1eL0fIgbMIaFvdgs5VclXjZttd-dR_K40WeM4-YE_sNp1S58MbF1yYTQpx4EdaCg9Pio80TK0YrFy2CDHzx7ts8x5KTd8Uxfsnb0q1CnBXiCHkLM1tfahQxzUleVw_g5Fre_SH0inmBWyBkKo3v_MxmipxR1CEOmWoEfSutI2NvG3Y7IMTnywYjMTlmjJd4BS_b8IJBErPYqUvaTFs9QQ_hBl7xKCDHkWZKmrlzZSaJC3d1uMNQ3IqrKv4DoEf_Hn4GtwhZ8YdpdPgYNiRzITf5djvQq8sf-ARuup_1WVU-bQ-DgM_XjbHf6MlNvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Symmetric+Boundary-Enhanced+U-Net+with+Mamba+Architecture+for+Glomerular+Segmentation+in+Renal+Pathological+Images&rft.jtitle=Symmetry+%28Basel%29&rft.au=Zhang%2C+Shengnan&rft.au=Cui%2C+Xinming&rft.au=Ma%2C+Guangkun&rft.au=Tian%2C+Ronghui&rft.date=2025-09-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=17&rft.issue=9&rft.spage=1506&rft_id=info:doi/10.3390%2Fsym17091506&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym17091506
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon