Symmetric Boundary-Enhanced U-Net with Mamba Architecture for Glomerular Segmentation in Renal Pathological Images

Accurate glomerular segmentation in renal pathological images is a key challenge for chronic kidney disease diagnosis and assessment. Due to the high visual similarity between pathological glomeruli and surrounding tissues in color, texture, and morphology, significant “camouflage phenomena” exist,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) Jg. 17; H. 9; S. 1506
Hauptverfasser: Zhang, Shengnan, Cui, Xinming, Ma, Guangkun, Tian, Ronghui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.09.2025
Schlagworte:
ISSN:2073-8994, 2073-8994
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate glomerular segmentation in renal pathological images is a key challenge for chronic kidney disease diagnosis and assessment. Due to the high visual similarity between pathological glomeruli and surrounding tissues in color, texture, and morphology, significant “camouflage phenomena” exist, leading to boundary identification difficulties. To address this problem, we propose BM-UNet, a novel segmentation framework that embeds boundary guidance mechanisms into a Mamba architecture with a symmetric encoder–decoder design. The framework enhances feature transmission through explicit boundary detection, incorporating four core modules designed for key challenges in pathological image segmentation. The Multi-scale Adaptive Fusion (MAF) module processes irregular tissue morphology, the Hybrid Boundary Detection (HBD) module handles boundary feature extraction, the Boundary-guided Attention (BGA) module achieves boundary-aware feature refinement, and the Mamba-based Fused Decoder Block (MFDB) completes boundary-preserving reconstruction. By introducing explicit boundary supervision mechanisms, the framework achieves significant segmentation accuracy improvements while maintaining linear computational complexity. Validation on the KPIs2024 glomerular dataset and HuBMAP renal tissue samples demonstrates that BM-UNet achieves a 92.4–95.3% mean Intersection over Union across different CKD pathological conditions, with a 4.57% improvement over the Mamba baseline and a processing speed of 113.7 FPS.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2073-8994
2073-8994
DOI:10.3390/sym17091506