Artificial neural networks in structural dynamics: A new modular radial basis function approach vs. convolutional and feedforward topologies

The aim of the present study is to develop a series of artificial neural networks (ANN) and to determine, by comparison to experiments, which type of neural network is able to predict the measured structural deformations most accurately. For this approach, three different ANNs are proposed. Firstly,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer methods in applied mechanics and engineering Ročník 364; s. 112989
Hlavní autoři: Stoffel, Marcus, Gulakala, Rutwik, Bamer, Franz, Markert, Bernd
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.06.2020
Elsevier BV
Témata:
ISSN:0045-7825, 1879-2138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The aim of the present study is to develop a series of artificial neural networks (ANN) and to determine, by comparison to experiments, which type of neural network is able to predict the measured structural deformations most accurately. For this approach, three different ANNs are proposed. Firstly, the classical form of an ANN in the form of a feedforward neural network (FFNN). In the second approach a new modular radial basis function neural network (RBFNN) is proposed and the third network consists of a deep convolutional neural network (DCNN). By means of comparative calculations between neural network enhanced numerical predictions and measurements, the applicability of each type of network is studied. •Three types of artificial neural networks are proposed for structural dynamics.•All calculated results are verified by means of shock tube experiments.•A new modular radial basis function network is developed.•The convolutional neural networks capture the loading and deformation history.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2020.112989