Ensemble unsupervised autoencoders and Gaussian mixture model for cyberattack detection

Previous studies have adopted unsupervised machine learning with dimension reduction functions for cyberattack detection, which are limited to performing robust anomaly detection with high-dimensional and sparse data. Most of them usually assume homogeneous parameters with a specific Gaussian distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing & management Jg. 59; H. 2; S. 102844
Hauptverfasser: An, Peng, Wang, Zhiyuan, Zhang, Chunjiong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 01.03.2022
Elsevier Science Ltd
Schlagworte:
ISSN:0306-4573, 1873-5371
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Previous studies have adopted unsupervised machine learning with dimension reduction functions for cyberattack detection, which are limited to performing robust anomaly detection with high-dimensional and sparse data. Most of them usually assume homogeneous parameters with a specific Gaussian distribution for each domain, ignoring the robust testing of data skewness. This paper proposes to use unsupervised ensemble autoencoders connected to the Gaussian mixture model (GMM) to adapt to multiple domains regardless of the skewness of each domain. In the hidden space of the ensemble autoencoder, the attention-based latent representation and reconstructed features of the minimum error are utilized. The expectation maximization (EM) algorithm is used to estimate the sample density in the GMM. When the estimated sample density exceeds the learning threshold obtained in the training phase, the sample is identified as an outlier related to an attack anomaly. Finally, the ensemble autoencoder and the GMM are jointly optimized, which transforms the optimization of objective function into a Lagrangian dual problem. Experiments conducted on three public data sets validate that the performance of the proposed model is significantly competitive with the selected anomaly detection baselines. •An ensemble framework of multichannel network anomaly detection model that combines deep autoencoders and the GMM.•A robust optimization version of EM3 for multiple domains, which transforms the optimization problem of the objective function into a Lagrangian dual.•We deduce the formula and analyze the convergence of the full text, and prove that our model has stability and robustness.•To the best of our knowledge is the first work that performs algorithms on both differentiated data domains and data distributions.
AbstractList Previous studies have adopted unsupervised machine learning with dimension reduction functions for cyberattack detection, which are limited to performing robust anomaly detection with high-dimensional and sparse data. Most of them usually assume homogeneous parameters with a specific Gaussian distribution for each domain, ignoring the robust testing of data skewness. This paper proposes to use unsupervised ensemble autoencoders connected to the Gaussian mixture model (GMM) to adapt to multiple domains regardless of the skewness of each domain. In the hidden space of the ensemble autoencoder, the attention-based latent representation and reconstructed features of the minimum error are utilized. The expectation maximization (EM) algorithm is used to estimate the sample density in the GMM. When the estimated sample density exceeds the learning threshold obtained in the training phase, the sample is identified as an outlier related to an attack anomaly. Finally, the ensemble autoencoder and the GMM are jointly optimized, which transforms the optimization of objective function into a Lagrangian dual problem. Experiments conducted on three public data sets validate that the performance of the proposed model is significantly competitive with the selected anomaly detection baselines. •An ensemble framework of multichannel network anomaly detection model that combines deep autoencoders and the GMM.•A robust optimization version of EM3 for multiple domains, which transforms the optimization problem of the objective function into a Lagrangian dual.•We deduce the formula and analyze the convergence of the full text, and prove that our model has stability and robustness.•To the best of our knowledge is the first work that performs algorithms on both differentiated data domains and data distributions.
Previous studies have adopted unsupervised machine learning with dimension reduction functions for cyberattack detection, which are limited to performing robust anomaly detection with high-dimensional and sparse data. Most of them usually assume homogeneous parameters with a specific Gaussian distribution for each domain, ignoring the robust testing of data skewness. This paper proposes to use unsupervised ensemble autoencoders connected to the Gaussian mixture model (GMM) to adapt to multiple domains regardless of the skewness of each domain. In the hidden space of the ensemble autoencoder, the attention-based latent representation and reconstructed features of the minimum error are utilized. The expectation maximization (EM) algorithm is used to estimate the sample density in the GMM. When the estimated sample density exceeds the learning threshold obtained in the training phase, the sample is identified as an outlier related to an attack anomaly. Finally, the ensemble autoencoder and the GMM are jointly optimized, which transforms the optimization of objective function into a Lagrangian dual problem. Experiments conducted on three public data sets validate that the performance of the proposed model is significantly competitive with the selected anomaly detection baselines.
ArticleNumber 102844
Author An, Peng
Wang, Zhiyuan
Zhang, Chunjiong
Author_xml – sequence: 1
  givenname: Peng
  surname: An
  fullname: An, Peng
  organization: College of Electronics and Information Engineering, Ningbo University of Technology, Ningbo 315211, Zhejiang, PR China
– sequence: 2
  givenname: Zhiyuan
  orcidid: 0000-0001-9638-6515
  surname: Wang
  fullname: Wang, Zhiyuan
  organization: International College of Football, Tongji University, Shanghai 200092, PR China
– sequence: 3
  givenname: Chunjiong
  orcidid: 0000-0002-6711-3486
  surname: Zhang
  fullname: Zhang, Chunjiong
  email: chunjiongzhang@tongji.edu.cn
  organization: Department of Computer Science, Tongji University, Shanghai 201804, PR China
BookMark eNp9kEtrGzEQgEVJIE6aH5CboOd19dxdk1MJiRMI5NLSo5iVRiDXKzmSNjT_PjLuqYechmHmm8d3Sc5iikjIDWdrznj_fbcOh3ktmOAtF6NSX8iKj4PstBz4GVkxyfpO6UFekMtSdowxpblYkd_3seA87ZEusSwHzG-hoKOw1ITRJoe5UIiObmEpJUCkc_hbl4x0brU99SlT-z5hhlrB_qEOK9oaUvxKzj3sC17_i1fk18P9z7vH7vll-3T347mzUujaCZi4R60UE8yraeyFRWB-BI_jyNgE0klgfNISJ9TOOu-kFeD6YQPCK5RX5Ntp7iGn1wVLNbu05NhWGtErrseN3oytazh12ZxKyeiNDRWOd9YMYW84M0eLZmeaRXO0aE4WG8n_Iw85zJDfP2VuTwy2x98CZlNsaDbRhdzsGJfCJ_QHhLuOxw
CitedBy_id crossref_primary_10_1155_2022_5212585
crossref_primary_10_1007_s10618_025_01131_5
crossref_primary_10_1002_joc_8618
crossref_primary_10_1155_2022_8328378
crossref_primary_10_1155_2022_7244001
crossref_primary_10_51889_2959_5894_2024_86_2_018
crossref_primary_10_1155_2022_3848836
crossref_primary_10_1155_2022_2097422
crossref_primary_10_1016_j_iot_2024_101342
crossref_primary_10_1155_2022_1153080
crossref_primary_10_1155_2022_1859020
crossref_primary_10_1155_2022_7646452
crossref_primary_10_1155_2022_9263736
crossref_primary_10_1155_2022_9208172
crossref_primary_10_3390_fi15050187
crossref_primary_10_1007_s10462_023_10662_6
crossref_primary_10_1007_s43538_023_00205_6
crossref_primary_10_1155_2022_3832935
crossref_primary_10_1155_2022_4135519
crossref_primary_10_1155_2022_4268982
crossref_primary_10_1155_2022_9190687
crossref_primary_10_1155_2022_4326551
crossref_primary_10_1155_2022_1104633
crossref_primary_10_1155_2022_2779909
crossref_primary_10_1155_2022_4875859
crossref_primary_10_1155_2022_9011311
crossref_primary_10_1155_2022_5295115
crossref_primary_10_1177_01423312241284660
crossref_primary_10_1155_2022_9517615
crossref_primary_10_1155_2022_2286803
crossref_primary_10_1155_2022_2899128
crossref_primary_10_1155_2022_7079045
crossref_primary_10_1155_2022_7765024
crossref_primary_10_1155_2022_8411550
crossref_primary_10_1109_TIV_2024_3369851
crossref_primary_10_1155_2022_3198565
crossref_primary_10_1155_2022_8396348
crossref_primary_10_1155_2022_3447851
crossref_primary_10_1186_s13635_023_00139_y
crossref_primary_10_1155_2022_2084606
crossref_primary_10_1155_2022_4560697
crossref_primary_10_1007_s00500_023_08985_1
crossref_primary_10_1155_2022_7104750
crossref_primary_10_1155_2022_7122846
crossref_primary_10_1155_2022_7773157
crossref_primary_10_1155_2022_8460433
crossref_primary_10_1155_2022_8224184
crossref_primary_10_1016_j_ipm_2023_103476
crossref_primary_10_1155_2022_8168396
crossref_primary_10_1155_2022_1068467
crossref_primary_10_1155_2022_4261240
crossref_primary_10_3390_s22176659
crossref_primary_10_1155_2022_4066761
crossref_primary_10_1155_2022_4680905
crossref_primary_10_1145_3675405
crossref_primary_10_1155_2022_1971341
crossref_primary_10_1155_2023_3898063
crossref_primary_10_1155_2022_1518447
crossref_primary_10_1155_2022_2184600
crossref_primary_10_1155_2022_3643799
crossref_primary_10_1155_2022_4980893
crossref_primary_10_1007_s11370_025_00629_7
crossref_primary_10_1155_2022_3365161
crossref_primary_10_1155_2022_7628124
crossref_primary_10_1016_j_patcog_2023_110193
crossref_primary_10_1155_2022_5485284
crossref_primary_10_3390_e25071065
crossref_primary_10_1016_j_istruc_2025_109052
crossref_primary_10_1155_2022_2035662
crossref_primary_10_1155_2022_6097834
crossref_primary_10_1007_s10922_023_09767_8
crossref_primary_10_1155_2022_7125462
crossref_primary_10_1155_2022_6490194
crossref_primary_10_1007_s11630_024_2075_0
crossref_primary_10_1016_j_engfracmech_2024_110699
crossref_primary_10_1155_2022_7833292
crossref_primary_10_1155_2022_8566454
crossref_primary_10_1155_2022_8925907
crossref_primary_10_1007_s11222_025_10621_x
crossref_primary_10_1016_j_apenergy_2025_125768
crossref_primary_10_1155_2022_1797080
crossref_primary_10_1155_2022_1056869
crossref_primary_10_1155_2022_1086817
crossref_primary_10_1155_2022_8566721
crossref_primary_10_1007_s10115_024_02172_w
crossref_primary_10_1155_2022_6711470
crossref_primary_10_1109_TCE_2024_3519437
crossref_primary_10_1109_TDSC_2024_3418906
crossref_primary_10_1155_2022_7747192
crossref_primary_10_1007_s10489_024_05602_y
crossref_primary_10_1155_2022_2179494
crossref_primary_10_1016_j_ipm_2025_104238
crossref_primary_10_1155_2022_4508507
crossref_primary_10_3390_e26090762
crossref_primary_10_1155_2022_5862204
crossref_primary_10_1155_2022_8958865
crossref_primary_10_1155_2022_5350786
crossref_primary_10_1155_2022_6361098
crossref_primary_10_1155_2022_5035369
crossref_primary_10_1155_2022_2333497
crossref_primary_10_1155_2022_3548854
crossref_primary_10_1155_2022_7564988
crossref_primary_10_1155_2022_2779686
crossref_primary_10_1155_2022_3702479
crossref_primary_10_1049_ntw2_12134
crossref_primary_10_1155_2022_1681657
crossref_primary_10_1109_ACCESS_2024_3360691
crossref_primary_10_1155_2022_6518521
crossref_primary_10_1155_2022_7135043
crossref_primary_10_1155_2022_8077277
crossref_primary_10_1109_JSEN_2024_3363767
crossref_primary_10_1155_2022_3109468
crossref_primary_10_1515_apjri_2024_0002
crossref_primary_10_1007_s10489_024_05654_0
crossref_primary_10_1155_2022_8409780
crossref_primary_10_1155_2022_1113023
crossref_primary_10_1155_2022_5028705
crossref_primary_10_1155_2022_3127698
crossref_primary_10_1155_2022_9717449
crossref_primary_10_1155_2022_7173421
crossref_primary_10_1155_2022_7609195
crossref_primary_10_1155_2022_7665954
crossref_primary_10_1007_s40031_024_01049_4
crossref_primary_10_1016_j_engappai_2023_107706
crossref_primary_10_1155_2022_5109638
crossref_primary_10_1155_2022_9328712
crossref_primary_10_1155_2022_2278683
crossref_primary_10_1155_2022_9585760
crossref_primary_10_3390_sym14020409
crossref_primary_10_1155_2022_7247932
crossref_primary_10_1155_2022_5501322
crossref_primary_10_1177_00405175231171720
crossref_primary_10_1016_j_neunet_2025_107416
crossref_primary_10_1007_s10207_025_01000_8
crossref_primary_10_1155_2022_8595203
crossref_primary_10_1155_2022_2850604
crossref_primary_10_1155_2022_3387543
crossref_primary_10_1155_2022_5820145
crossref_primary_10_1155_2022_7068596
crossref_primary_10_1371_journal_pone_0317042
crossref_primary_10_1155_2022_1219802
crossref_primary_10_1155_2022_6825863
crossref_primary_10_1155_2022_9086938
crossref_primary_10_1142_S0218126625501634
crossref_primary_10_1155_2022_1022421
crossref_primary_10_1155_2022_4117957
crossref_primary_10_3390_land13071039
crossref_primary_10_1155_2022_5813577
crossref_primary_10_1155_2022_1857304
crossref_primary_10_1016_j_eswa_2024_123675
crossref_primary_10_1155_2022_1230786
crossref_primary_10_1155_2022_6737194
crossref_primary_10_1155_2022_2281469
crossref_primary_10_1155_2022_4861684
crossref_primary_10_1016_j_asoc_2024_111423
crossref_primary_10_1155_2022_6245984
crossref_primary_10_1155_2022_1110698
crossref_primary_10_2478_amns_2023_2_00097
crossref_primary_10_1007_s11356_024_32170_y
crossref_primary_10_1080_10618600_2024_2414889
crossref_primary_10_1002_spe_3407
crossref_primary_10_1016_j_datak_2025_102430
crossref_primary_10_1155_2022_5875380
crossref_primary_10_1016_j_inffus_2024_102922
crossref_primary_10_1155_2022_6023784
crossref_primary_10_1155_2022_5696334
crossref_primary_10_1186_s13662_025_03925_9
crossref_primary_10_1155_2022_2787994
crossref_primary_10_1155_2022_4033886
crossref_primary_10_1155_2022_3077453
crossref_primary_10_1155_2022_3713891
crossref_primary_10_1155_2022_7581079
crossref_primary_10_1155_2022_4879361
crossref_primary_10_1155_2022_1682147
crossref_primary_10_1155_2022_8169938
crossref_primary_10_1016_j_patcog_2024_110846
crossref_primary_10_1155_2022_5220916
crossref_primary_10_1155_2022_8730399
crossref_primary_10_1155_2022_5855328
crossref_primary_10_1007_s13369_025_10501_6
crossref_primary_10_1155_2022_6708033
crossref_primary_10_1155_2022_4152884
crossref_primary_10_1016_j_iot_2025_101518
crossref_primary_10_1016_j_jenvman_2023_118846
crossref_primary_10_1155_2022_6823102
crossref_primary_10_1371_journal_pone_0330421
crossref_primary_10_1002_cpe_7718
crossref_primary_10_1155_2022_8294254
crossref_primary_10_1155_2022_7126743
Cites_doi 10.1109/ICCV.2019.00047
10.1109/MNET.2019.1800358
10.1109/CVPR.2018.00086
10.1016/j.physleta.2005.11.005
10.1109/TNSM.2016.2627340
10.1109/ICCV.2019.00179
10.1016/j.neucom.2017.04.014
10.1609/aaai.v33i01.33014739
10.1145/3097983.3098052
10.1109/CVPR.2018.00417
10.1109/TETCI.2017.2772792
10.1109/TNNLS.2019.2905082
10.1016/j.measurement.2019.107232
10.1016/j.ins.2017.04.044
ContentType Journal Article
Copyright 2021
Copyright Elsevier Science Ltd. Mar 2022
Copyright_xml – notice: 2021
– notice: Copyright Elsevier Science Ltd. Mar 2022
DBID AAYXX
CITATION
E3H
F2A
DOI 10.1016/j.ipm.2021.102844
DatabaseName CrossRef
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle CrossRef
Library and Information Science Abstracts (LISA)
DatabaseTitleList
Library and Information Science Abstracts (LISA)
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 1873-5371
ExternalDocumentID 10_1016_j_ipm_2021_102844
S0306457321003162
GroupedDBID --K
--M
-~X
.DC
.~1
0B8
0R~
1B1
1RT
1~.
1~5
29I
4.4
41~
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABPPZ
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
LPU
LY1
M3Y
M41
MO0
MS~
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSO
SSS
SSV
SSZ
T5K
TN5
U5U
UHB
UHS
UNMZH
WUQ
XFK
ZMT
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
E3H
F2A
ID FETCH-LOGICAL-c325t-2ab1fe544020f4b862cea0f8afe8800ba3d3a01b53ebe5dcdfd3c2ad679a2f4e3
ISICitedReferencesCount 209
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744117200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-4573
IngestDate Fri Nov 14 18:45:01 EST 2025
Sat Nov 29 07:23:45 EST 2025
Tue Nov 18 22:25:17 EST 2025
Fri Feb 23 02:41:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Multidomain data
Cyberattacks
GMM
Deep autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-2ab1fe544020f4b862cea0f8afe8800ba3d3a01b53ebe5dcdfd3c2ad679a2f4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9638-6515
0000-0002-6711-3486
PQID 2641589598
PQPubID 46166
ParticipantIDs proquest_journals_2641589598
crossref_citationtrail_10_1016_j_ipm_2021_102844
crossref_primary_10_1016_j_ipm_2021_102844
elsevier_sciencedirect_doi_10_1016_j_ipm_2021_102844
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Information processing & management
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Schoenauer-Sebag, Heinrich, Schoenauer, Sebag, Wu, Altschuler (b24) 2019
(pp. 665–674).
Fourure, Emonet, Fromont, Muselet, Neverova, Trémeau (b5) 2017; 251
Luong, Pham, Manning (b15) 2015
Zong, Song, Min, Cheng, Lumezanu, Cho (b34) 2018
Liao, Guo, Chen, Li (b13) 2018
Injadat, Moubayed, Nassif, Shami (b9) 2020
Yu (b30) 2020; 67
Berriel, R., Lathuillere, S., Nabi, M., Klein, T., Oliveira-Santos, T., & Sebe, N., et al. (2019). Budget-aware adapters for multi-domain learning. In
Xu, Qian, Hu (b29) 2019; 33
Zhang, Li, Gao, Chen, Li (b32) 2020; 151
Dromard, Roudière, Owezarski (b4) 2016; 14
Mariño, Míguez (b18) 2006; 351
Rezvy, Petridis, Lasebae, Zebin (b23) 2018
Zhou, C., & Paffenroth, R. C. (2017). Anomaly detection with robust deep autoencoders. In
(pp. 3964–3973).
(pp. 1705–1714).
(pp. 762–771).
Pratama, Kang (b20) 2020
Injadat, Moubayed, Shami (b10) 2020
Mahdavifar, Kadir, Fatemi, Alhadidi, Ghorbani (b16) 2020
Andresini, Appice, Di Mauro, Loglisci, Malerba (b1) 2019
Peng, Dredze (b19) 2016
Majumdar, Tripathi (b17) 2017
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette (b6) 2016; 17
Vaca, Niyaz (b26) 2018
Shone, Ngoc, Phai, Shi (b25) 2018; 2
Ren, Z., & Lee, Y. J. (2018). Cross-domain self-supervised multi-task feature learning using synthetic imagery. In
Liu, Li, Zhou, Jiang, Sun, Wang (b14) 2020; 32
(pp. 382–391).
Qian, Q., Zhu, S., Tang, J., Jin, R., Sun, B., & Li, H. (2019). Robust optimization over multiple domains. In
Li, Zou, Zhong (b12) 2020
(pp. 4739–4746).
Hu, Li, Liu, Li (b8) 2020; 31
Kim, Kwon, Chang, Paik (b11) 2020
Chen, Yan, Han, Wang, Peng, Wang (b3) 2018; 433
Gong, D., Liu, L., Le, V., Saha, B., Mansour, M. R., & Venkatesh, S., et al. (2019). Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In
Xu, R., Chen, Z., Zuo, W., Yan, J., & Lin, L. (2018). Deep cocktail network: Multi-source unsupervised domain adaptation with category shift. In
Wang, Xu, Huang, Wang, Lai (b27) 2018
Zenati, Romain, Foo, Lecouat, Chandrasekhar (b31) 2018
Xu (10.1016/j.ipm.2021.102844_b29) 2019; 33
Fourure (10.1016/j.ipm.2021.102844_b5) 2017; 251
Wang (10.1016/j.ipm.2021.102844_b27) 2018
Shone (10.1016/j.ipm.2021.102844_b25) 2018; 2
Vaca (10.1016/j.ipm.2021.102844_b26) 2018
Kim (10.1016/j.ipm.2021.102844_b11) 2020
Andresini (10.1016/j.ipm.2021.102844_b1) 2019
Injadat (10.1016/j.ipm.2021.102844_b10) 2020
Majumdar (10.1016/j.ipm.2021.102844_b17) 2017
Yu (10.1016/j.ipm.2021.102844_b30) 2020; 67
Pratama (10.1016/j.ipm.2021.102844_b20) 2020
Chen (10.1016/j.ipm.2021.102844_b3) 2018; 433
Zhang (10.1016/j.ipm.2021.102844_b32) 2020; 151
Mahdavifar (10.1016/j.ipm.2021.102844_b16) 2020
Mariño (10.1016/j.ipm.2021.102844_b18) 2006; 351
Peng (10.1016/j.ipm.2021.102844_b19) 2016
Hu (10.1016/j.ipm.2021.102844_b8) 2020; 31
Liao (10.1016/j.ipm.2021.102844_b13) 2018
10.1016/j.ipm.2021.102844_b33
Rezvy (10.1016/j.ipm.2021.102844_b23) 2018
10.1016/j.ipm.2021.102844_b2
Injadat (10.1016/j.ipm.2021.102844_b9) 2020
Li (10.1016/j.ipm.2021.102844_b12) 2020
Liu (10.1016/j.ipm.2021.102844_b14) 2020; 32
10.1016/j.ipm.2021.102844_b7
Luong (10.1016/j.ipm.2021.102844_b15) 2015
Schoenauer-Sebag (10.1016/j.ipm.2021.102844_b24) 2019
Zenati (10.1016/j.ipm.2021.102844_b31) 2018
Zong (10.1016/j.ipm.2021.102844_b34) 2018
10.1016/j.ipm.2021.102844_b28
Ganin (10.1016/j.ipm.2021.102844_b6) 2016; 17
Dromard (10.1016/j.ipm.2021.102844_b4) 2016; 14
10.1016/j.ipm.2021.102844_b21
10.1016/j.ipm.2021.102844_b22
References_xml – volume: 14
  start-page: 34
  year: 2016
  end-page: 47
  ident: b4
  article-title: Online and scalable unsupervised network anomaly detection method
  publication-title: IEEE Transactions on Network and Service Management
– volume: 351
  start-page: 262
  year: 2006
  end-page: 267
  ident: b18
  article-title: An approximate gradient-descent method for joint parameter estimation and synchronization of coupled chaotic systems
  publication-title: Physics Letters. A
– reference: (pp. 762–771).
– reference: Zhou, C., & Paffenroth, R. C. (2017). Anomaly detection with robust deep autoencoders. In:
– start-page: 515
  year: 2020
  end-page: 522
  ident: b16
  article-title: Dynamic android malware category classification using semi-supervised deep learning
  publication-title: 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech)
– volume: 17
  year: 2016
  ident: b6
  article-title: Domain-adversarial training of neural networks
  publication-title: Journal of Machine Learning Research
– reference: Ren, Z., & Lee, Y. J. (2018). Cross-domain self-supervised multi-task feature learning using synthetic imagery. In:
– year: 2020
  ident: b12
  article-title: Learning graph neural networks with approximate gradient descent
– year: 2016
  ident: b19
  article-title: Multi-task multi-domain representation learning for sequence tagging
– reference: Xu, R., Chen, Z., Zuo, W., Yan, J., & Lin, L. (2018). Deep cocktail network: Multi-source unsupervised domain adaptation with category shift. In:
– volume: 433
  start-page: 346
  year: 2018
  end-page: 364
  ident: b3
  article-title: Machine learning based mobile malware detection using highly imbalanced network traffic
  publication-title: Information Sciences
– volume: 151
  year: 2020
  ident: b32
  article-title: Intelligent fault diagnosis of rotating machinery using a new ensemble deep auto-encoder method
  publication-title: Measurement
– reference: Qian, Q., Zhu, S., Tang, J., Jin, R., Sun, B., & Li, H. (2019). Robust optimization over multiple domains. In:
– start-page: 142
  year: 2018
  end-page: 156
  ident: b23
  article-title: Intrusion detection and classification with autoencoded deep neural network
  publication-title: International Conference on Security for Information Technology and Communications
– year: 2018
  ident: b34
  article-title: Deep autoencoding gaussian mixture model for unsupervised anomaly detection
  publication-title: International Conference on Learning Representations
– reference: Berriel, R., Lathuillere, S., Nabi, M., Klein, T., Oliveira-Santos, T., & Sebe, N., et al. (2019). Budget-aware adapters for multi-domain learning. In:
– reference: (pp. 1705–1714).
– start-page: 727
  year: 2018
  end-page: 736
  ident: b31
  article-title: Adversarially learned anomaly detection
  publication-title: 2018 IEEE International Conference on Data Mining (ICDM)
– start-page: 1208
  year: 2018
  end-page: 1217
  ident: b13
  article-title: A unified unsupervised gaussian mixture variational autoencoder for high dimensional outlier detection
  publication-title: 2018 IEEE International Conference on Big Data (Big Data)
– reference: Gong, D., Liu, L., Le, V., Saha, B., Mansour, M. R., & Venkatesh, S., et al. (2019). Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In:
– volume: 32
  start-page: 1517
  year: 2020
  end-page: 1528
  ident: b14
  article-title: Generative adversarial active learning for unsupervised outlier detection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: (pp. 665–674).
– start-page: 1
  year: 2020
  end-page: 18
  ident: b20
  article-title: Trainable activation function with differentiable negative side and adaptable rectified point
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
– start-page: 281
  year: 2019
  end-page: 290
  ident: b1
  article-title: Exploiting the auto-encoder residual error for intrusion detection
  publication-title: 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)
– start-page: 2507
  year: 2020
  end-page: 2517
  ident: b11
  article-title: Lipschitz continuous autoencoders in application to anomaly detection
  publication-title: International Conference on Artificial Intelligence and Statistics
– reference: (pp. 3964–3973).
– volume: 31
  start-page: 475
  year: 2020
  end-page: 487
  ident: b8
  article-title: Flow adversarial networks: Flowrate prediction for gas-liquid multiphase flows across different domains
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2015
  ident: b15
  article-title: Effective approaches to attention-based neural machine translation
– volume: 67
  start-page: 2512
  year: 2020
  end-page: 2516
  ident: b30
  article-title: Optimization of combined power and modeling attacks on VR PUFs with Lagrange multipliers
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– start-page: 276
  year: 2018
  end-page: 286
  ident: b27
  article-title: Stacked discriminative denoising auto-encoder based recommender system
  publication-title: International Conference on Intelligent Science and Big Data Engineering
– start-page: 1
  year: 2020
  ident: b9
  article-title: Multi-stage optimized machine learning framework for network intrusion detection
  publication-title: IEEE Transactions on Network and Service Management
– reference: (pp. 382–391).
– volume: 33
  start-page: 88
  year: 2019
  end-page: 95
  ident: b29
  article-title: Data-driven network intelligence for anomaly detection
  publication-title: IEEE Network
– reference: (pp. 4739–4746).
– start-page: 1
  year: 2020
  end-page: 4
  ident: b10
  article-title: Detecting botnet attacks in IoT environments: An optimized machine learning approach
  publication-title: 2020 32nd International Conference on Microelectronics (ICM)
– start-page: 911
  year: 2017
  end-page: 918
  ident: b17
  article-title: Asymmetric stacked autoencoder
  publication-title: 2017 International Joint Conference on Neural Networks (IJCNN)
– volume: 2
  start-page: 41
  year: 2018
  end-page: 50
  ident: b25
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– year: 2019
  ident: b24
  article-title: Multi-domain adversarial learning
– start-page: 1
  year: 2018
  end-page: 5
  ident: b26
  article-title: An ensemble learning based wi-fi network intrusion detection system (wnids)
  publication-title: 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA)
– volume: 251
  start-page: 68
  year: 2017
  end-page: 80
  ident: b5
  article-title: Multi-task, multi-domain learning: application to semantic segmentation and pose regression
  publication-title: Neurocomputing
– ident: 10.1016/j.ipm.2021.102844_b2
  doi: 10.1109/ICCV.2019.00047
– start-page: 281
  year: 2019
  ident: 10.1016/j.ipm.2021.102844_b1
  article-title: Exploiting the auto-encoder residual error for intrusion detection
– start-page: 515
  year: 2020
  ident: 10.1016/j.ipm.2021.102844_b16
  article-title: Dynamic android malware category classification using semi-supervised deep learning
– start-page: 1208
  year: 2018
  ident: 10.1016/j.ipm.2021.102844_b13
  article-title: A unified unsupervised gaussian mixture variational autoencoder for high dimensional outlier detection
– start-page: 276
  year: 2018
  ident: 10.1016/j.ipm.2021.102844_b27
  article-title: Stacked discriminative denoising auto-encoder based recommender system
– volume: 33
  start-page: 88
  issue: 3
  year: 2019
  ident: 10.1016/j.ipm.2021.102844_b29
  article-title: Data-driven network intelligence for anomaly detection
  publication-title: IEEE Network
  doi: 10.1109/MNET.2019.1800358
– ident: 10.1016/j.ipm.2021.102844_b22
  doi: 10.1109/CVPR.2018.00086
– start-page: 1
  year: 2020
  ident: 10.1016/j.ipm.2021.102844_b9
  article-title: Multi-stage optimized machine learning framework for network intrusion detection
  publication-title: IEEE Transactions on Network and Service Management
– volume: 351
  start-page: 262
  issue: 4–5
  year: 2006
  ident: 10.1016/j.ipm.2021.102844_b18
  article-title: An approximate gradient-descent method for joint parameter estimation and synchronization of coupled chaotic systems
  publication-title: Physics Letters. A
  doi: 10.1016/j.physleta.2005.11.005
– start-page: 1
  year: 2020
  ident: 10.1016/j.ipm.2021.102844_b20
  article-title: Trainable activation function with differentiable negative side and adaptable rectified point
  publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
– volume: 14
  start-page: 34
  issue: 1
  year: 2016
  ident: 10.1016/j.ipm.2021.102844_b4
  article-title: Online and scalable unsupervised network anomaly detection method
  publication-title: IEEE Transactions on Network and Service Management
  doi: 10.1109/TNSM.2016.2627340
– ident: 10.1016/j.ipm.2021.102844_b7
  doi: 10.1109/ICCV.2019.00179
– volume: 251
  start-page: 68
  year: 2017
  ident: 10.1016/j.ipm.2021.102844_b5
  article-title: Multi-task, multi-domain learning: application to semantic segmentation and pose regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.014
– start-page: 2507
  year: 2020
  ident: 10.1016/j.ipm.2021.102844_b11
  article-title: Lipschitz continuous autoencoders in application to anomaly detection
– start-page: 142
  year: 2018
  ident: 10.1016/j.ipm.2021.102844_b23
  article-title: Intrusion detection and classification with autoencoded deep neural network
– year: 2015
  ident: 10.1016/j.ipm.2021.102844_b15
– start-page: 727
  year: 2018
  ident: 10.1016/j.ipm.2021.102844_b31
  article-title: Adversarially learned anomaly detection
– volume: 67
  start-page: 2512
  issue: 11
  year: 2020
  ident: 10.1016/j.ipm.2021.102844_b30
  article-title: Optimization of combined power and modeling attacks on VR PUFs with Lagrange multipliers
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 17
  issue: 1
  year: 2016
  ident: 10.1016/j.ipm.2021.102844_b6
  article-title: Domain-adversarial training of neural networks
  publication-title: Journal of Machine Learning Research
– year: 2016
  ident: 10.1016/j.ipm.2021.102844_b19
– ident: 10.1016/j.ipm.2021.102844_b21
  doi: 10.1609/aaai.v33i01.33014739
– start-page: 1
  year: 2018
  ident: 10.1016/j.ipm.2021.102844_b26
  article-title: An ensemble learning based wi-fi network intrusion detection system (wnids)
– ident: 10.1016/j.ipm.2021.102844_b33
  doi: 10.1145/3097983.3098052
– year: 2018
  ident: 10.1016/j.ipm.2021.102844_b34
  article-title: Deep autoencoding gaussian mixture model for unsupervised anomaly detection
– ident: 10.1016/j.ipm.2021.102844_b28
  doi: 10.1109/CVPR.2018.00417
– volume: 2
  start-page: 41
  issue: 1
  year: 2018
  ident: 10.1016/j.ipm.2021.102844_b25
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
  doi: 10.1109/TETCI.2017.2772792
– volume: 31
  start-page: 475
  issue: 2
  year: 2020
  ident: 10.1016/j.ipm.2021.102844_b8
  article-title: Flow adversarial networks: Flowrate prediction for gas-liquid multiphase flows across different domains
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2905082
– volume: 151
  year: 2020
  ident: 10.1016/j.ipm.2021.102844_b32
  article-title: Intelligent fault diagnosis of rotating machinery using a new ensemble deep auto-encoder method
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107232
– start-page: 911
  year: 2017
  ident: 10.1016/j.ipm.2021.102844_b17
  article-title: Asymmetric stacked autoencoder
– start-page: 1
  year: 2020
  ident: 10.1016/j.ipm.2021.102844_b10
  article-title: Detecting botnet attacks in IoT environments: An optimized machine learning approach
– volume: 433
  start-page: 346
  year: 2018
  ident: 10.1016/j.ipm.2021.102844_b3
  article-title: Machine learning based mobile malware detection using highly imbalanced network traffic
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.04.044
– volume: 32
  start-page: 1517
  issue: 8
  year: 2020
  ident: 10.1016/j.ipm.2021.102844_b14
  article-title: Generative adversarial active learning for unsupervised outlier detection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2019
  ident: 10.1016/j.ipm.2021.102844_b24
– year: 2020
  ident: 10.1016/j.ipm.2021.102844_b12
SSID ssj0004512
Score 2.6679401
Snippet Previous studies have adopted unsupervised machine learning with dimension reduction functions for cyberattack detection, which are limited to performing...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102844
SubjectTerms Algorithms
Anomalies
Cyberattacks
Cybercrime
Data
Deep autoencoder
Density
Domains
Experiments
GMM
Machine learning
Multidomain data
Normal distribution
Optimization
Outliers (statistics)
Probabilistic models
Robustness
Skewness
Title Ensemble unsupervised autoencoders and Gaussian mixture model for cyberattack detection
URI https://dx.doi.org/10.1016/j.ipm.2021.102844
https://www.proquest.com/docview/2641589598
Volume 59
WOSCitedRecordID wos000744117200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5371
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004512
  issn: 0306-4573
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbQlgMXRHmIQot8QBxAqZLY3iTHVbW8Dr1QxIpL5Dg2zULdqEnQ9t93_MpGi6gAiUsURYkdeT6P5z0IvYQzTVHFiojTJI8opzKq0sKkPvEigfMtm_PaNpvITk_z1aoIHt3OthPItM43m6L9r6SGZ0Bskzr7F-QeB4UHcA9EhyuQHa5_RPil7uSFyYcadDe0hhV0IFTyob80NStN3LJ1GLzjQ2cTKC-ajfUi2J44NupQXFem1HLPxfc3textsJaeSrE-h8lCp3WZBs7iMPfRsNNwmoV2ccD-iLTGe8dgvp4318MWnaPt-uR80GsY-9vUJAHa7BiT5exkIVdmG5hk87PieUSZa1xyLB27zTMSMeKasAR-7CuEN1u1-Bc27ywO6-OmNcUE0sQUoMhdHcmd6tmfzLRmVlBtgX-Z03ovzViRz9De4sNy9XFSWj7xLif3m8EFboMBdyb6nRCzc5xbGeXsAbrvlQu8cKDYR3ekfoiOfGoKfoUndMOeqT9CXwJg8BQweAoYDIDBATDYAwZbwGAYEU8Ag0fAPEaf3y7PTt5Hvt1GJEjK-ijlVaIko8aioGgFqq6QPFY5VxKYfFxxUhMeJxUjsPFZLWpVE5Hyep4VPFVUkidopi-1fIpwnSlBMi4kCJMgISpOYikzDsp7BeNVyQGKw_qVwteiNy1RfpQh6HBdwpKXZslLt-QH6PX4SesKsdz2Mg1EKb0k6STEEhB022eHgYCl39FdCRpDwvICIPPs30Z9ju5tN8khmvVXgzxCd8XPvumuXngY3gB_daXV
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+unsupervised+autoencoders+and+Gaussian+mixture+model+for+cyberattack+detection&rft.jtitle=Information+processing+%26+management&rft.au=An%2C+Peng&rft.au=Wang%2C+Zhiyuan&rft.au=Zhang%2C+Chunjiong&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0306-4573&rft.eissn=1873-5371&rft.volume=59&rft.issue=2&rft_id=info:doi/10.1016%2Fj.ipm.2021.102844&rft.externalDocID=S0306457321003162
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon