Dynamic Modification of Activation Function using the Backpropagation Algorithm in the Artificial Neural Networks

The paper proposes the dynamic modification of the activation function in a learning technique, more exactly backpropagation algorithm. The modification consists in changing slope of sigmoid function for activation function according to increase or decrease the error in an epoch of learning. The stu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of advanced computer science & applications Ročník 10; číslo 4
Hlavní autori: Mercioni, Marina Adriana, Tiron, Alexandru, Holban, Stefan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: West Yorkshire Science and Information (SAI) Organization Limited 2019
Predmet:
ISSN:2158-107X, 2156-5570
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The paper proposes the dynamic modification of the activation function in a learning technique, more exactly backpropagation algorithm. The modification consists in changing slope of sigmoid function for activation function according to increase or decrease the error in an epoch of learning. The study was done using the Waikato Environment for Knowledge Analysis (WEKA) platform to complete adding this feature in Multilayer Perceptron class. This study aims the dynamic modification of activation function has changed to relative gradient error, also neural networks with hidden layers have not used for it.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2019.0100406