Dynamic Modification of Activation Function using the Backpropagation Algorithm in the Artificial Neural Networks
The paper proposes the dynamic modification of the activation function in a learning technique, more exactly backpropagation algorithm. The modification consists in changing slope of sigmoid function for activation function according to increase or decrease the error in an epoch of learning. The stu...
Uložené v:
| Vydané v: | International journal of advanced computer science & applications Ročník 10; číslo 4 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
West Yorkshire
Science and Information (SAI) Organization Limited
2019
|
| Predmet: | |
| ISSN: | 2158-107X, 2156-5570 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The paper proposes the dynamic modification of the activation function in a learning technique, more exactly backpropagation algorithm. The modification consists in changing slope of sigmoid function for activation function according to increase or decrease the error in an epoch of learning. The study was done using the Waikato Environment for Knowledge Analysis (WEKA) platform to complete adding this feature in Multilayer Perceptron class. This study aims the dynamic modification of activation function has changed to relative gradient error, also neural networks with hidden layers have not used for it. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2158-107X 2156-5570 |
| DOI: | 10.14569/IJACSA.2019.0100406 |