A Noise-Robust Online convolutional coding model and its applications to poisson denoising and image fusion

In this paper, we propose a noise-robust online convolutional coding model for image representation, which can use the noisy images as training data. Then an alternating algorithm is utilized to convert the model into two sub-problems, the image pursuit problem and the dictionary learning problem. F...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied Mathematical Modelling Ročník 95; s. 644
Hlavní autoři: Wang, Wei, Xiang-Xia, He, Chuanjiang, Ren, Zemin, Wang, Tianfu, Lei, Baiying
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier BV 01.07.2021
Témata:
ISSN:1088-8691, 0307-904X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose a noise-robust online convolutional coding model for image representation, which can use the noisy images as training data. Then an alternating algorithm is utilized to convert the model into two sub-problems, the image pursuit problem and the dictionary learning problem. For the image pursuit problem, the Gauss elimination method is used to solve the equation set which is derived by the Euler equation and discrete Fourier transform. For the dictionary learning problem, a gradient-descent flow is derived to solve it. Experimental results show that our method can output more meaningful feature representations compared to the related models while the training data was corrupted by Poisson noise.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1088-8691
0307-904X
DOI:10.1016/j.apm.2021.02.023