A Noise-Robust Online convolutional coding model and its applications to poisson denoising and image fusion
In this paper, we propose a noise-robust online convolutional coding model for image representation, which can use the noisy images as training data. Then an alternating algorithm is utilized to convert the model into two sub-problems, the image pursuit problem and the dictionary learning problem. F...
Gespeichert in:
| Veröffentlicht in: | Applied Mathematical Modelling Jg. 95; S. 644 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Elsevier BV
01.07.2021
|
| Schlagworte: | |
| ISSN: | 1088-8691, 0307-904X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we propose a noise-robust online convolutional coding model for image representation, which can use the noisy images as training data. Then an alternating algorithm is utilized to convert the model into two sub-problems, the image pursuit problem and the dictionary learning problem. For the image pursuit problem, the Gauss elimination method is used to solve the equation set which is derived by the Euler equation and discrete Fourier transform. For the dictionary learning problem, a gradient-descent flow is derived to solve it. Experimental results show that our method can output more meaningful feature representations compared to the related models while the training data was corrupted by Poisson noise. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1088-8691 0307-904X |
| DOI: | 10.1016/j.apm.2021.02.023 |