Accelerated and Inexact Forward-Backward Algorithms
We propose a convergence analysis of accelerated forward-backward splitting methods for composite function minimization, when the proximity operator is not available in closed form, and can only be computed up to a certain precision. We prove that the $1/k^2$ convergence rate for the function values...
Uloženo v:
| Vydáno v: | SIAM journal on optimization Ročník 23; číslo 3; s. 1607 - 1633 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2013
|
| Témata: | |
| ISSN: | 1052-6234, 1095-7189 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose a convergence analysis of accelerated forward-backward splitting methods for composite function minimization, when the proximity operator is not available in closed form, and can only be computed up to a certain precision. We prove that the $1/k^2$ convergence rate for the function values can be achieved if the admissible errors are of a certain type and satisfy a sufficiently fast decay condition. Our analysis is based on the machinery of estimate sequences first introduced by Nesterov for the study of accelerated gradient descent algorithms. Furthermore, we give a global complexity analysis, taking into account the cost of computing admissible approximations of the proximal point. An experimental analysis is also presented. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1052-6234 1095-7189 |
| DOI: | 10.1137/110844805 |