Sub-Quadratic Decoding of One-Point Hermitian Codes
We present the first two sub-quadratic complexity decoding algorithms for one-point Hermitian codes. The first is based on a fast realization of the Guruswami-Sudan algorithm using state-of-the-art algorithms from computer algebra for polynomial-ring matrix minimization. The second is a power decodi...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on information theory Jg. 61; H. 6; S. 3225 - 3240 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.06.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Schlagworte: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We present the first two sub-quadratic complexity decoding algorithms for one-point Hermitian codes. The first is based on a fast realization of the Guruswami-Sudan algorithm using state-of-the-art algorithms from computer algebra for polynomial-ring matrix minimization. The second is a power decoding algorithm: an extension of classical key equation decoding which gives a probabilistic decoding algorithm up to the Sudan radius. We show how the resulting key equations can be solved by the matrix minimization algorithms from computer algebra, yielding similar asymptotic complexities. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2015.2424415 |