Parameterized computational complexity of Dodgson and Young elections
We show that the two NP-complete problems of Dodgson Score and Young Score have differing computational complexities when the winner is close to being a Condorcet winner. On the one hand, we present an efficient fixed-parameter algorithm for determining a Condorcet winner in Dodgson elections by a m...
Uloženo v:
| Vydáno v: | Information and computation Ročník 208; číslo 2; s. 165 - 177 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Inc
01.02.2010
Elsevier |
| Témata: | |
| ISSN: | 0890-5401, 1090-2651 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We show that the two NP-complete problems of
Dodgson Score and
Young Score have differing computational complexities when the winner is close to being a Condorcet winner. On the one hand, we present an efficient fixed-parameter algorithm for determining a Condorcet winner in Dodgson elections by a minimum number of switches in the votes. On the other hand, we prove that the corresponding problem for Young elections, where one has to delete votes instead of performing switches, is W[2]-complete. In addition, we study Dodgson elections that allow ties between the candidates and give fixed-parameter tractability as well as W[2]-completeness results depending on the cost model for switching ties. |
|---|---|
| ISSN: | 0890-5401 1090-2651 |
| DOI: | 10.1016/j.ic.2009.10.001 |