Rain-Free and Residue Hand-in-Hand: A Progressive Coupled Network for Real-Time Image Deraining
Rainy weather is a challenge for many vision-oriented tasks ( e.g. , object detection and segmentation), which causes performance degradation. Image deraining is an effective solution to avoid performance drop of downstream vision tasks. However, most existing deraining methods either fail to produc...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on image processing Jg. 30; S. 7404 - 7418 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Rainy weather is a challenge for many vision-oriented tasks ( e.g. , object detection and segmentation), which causes performance degradation. Image deraining is an effective solution to avoid performance drop of downstream vision tasks. However, most existing deraining methods either fail to produce satisfactory restoration results or cost too much computation. In this work, considering both effectiveness and efficiency of image deraining, we propose a progressive coupled network (PCNet) to well separate rain streaks while preserving rain-free details. To this end, we investigate the blending correlations between them and particularly devise a novel coupled representation module (CRM) to learn the joint features and the blending correlations. By cascading multiple CRMs, PCNet extracts the hierarchical features of multi-scale rain streaks, and separates the rain-free content and rain streaks progressively. To promote computation efficiency, we employ depth-wise separable convolutions and a U-shaped structure, and construct CRM in an asymmetric architecture to reduce model parameters and memory footprint. Extensive experiments are conducted to evaluate the efficacy of the proposed PCNet in two aspects: (1) image deraining on several synthetic and real-world rain datasets and (2) joint image deraining and downstream vision tasks ( e.g. , object detection and segmentation). Furthermore, we show that the proposed CRM can be easily adopted to similar image restoration tasks including image dehazing and low-light enhancement with competitive performance. The source code is available at https://github.com/kuijiang0802/PCNet . |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1057-7149 1941-0042 1941-0042 |
| DOI: | 10.1109/TIP.2021.3102504 |