Complex-Valued Neural Networks: A Comprehensive Survey
Complex-valued neural networks (CVNNs) have shown their excellent efficiency compared to their real counter-parts in speech enhancement, image and signal processing. Researchers throughout the years have made many efforts to improve the learning algorithms and activation functions of CVNNs. Since CV...
Saved in:
| Published in: | IEEE/CAA journal of automatica sinica Vol. 9; no. 8; pp. 1406 - 1426 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
Chinese Association of Automation (CAA)
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Faculty of Engineering,University of Toyama,Toyama 930-8555,Japan |
| Subjects: | |
| ISSN: | 2329-9266, 2329-9274 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Complex-valued neural networks (CVNNs) have shown their excellent efficiency compared to their real counter-parts in speech enhancement, image and signal processing. Researchers throughout the years have made many efforts to improve the learning algorithms and activation functions of CVNNs. Since CVNNs have proven to have better performance in handling the naturally complex-valued data and signals, this area of study will grow and expect the arrival of some effective improvements in the future. Therefore, there exists an obvious reason to provide a comprehensive survey paper that systematically collects and categorizes the advancement of CVNNs. In this paper, we discuss and summarize the recent advances based on their learning algorithms, activation functions, which is the most challenging part of building a CVNN, and applications. Besides, we outline the structure and applications of complex-valued convolutional, residual and recurrent neural networks. Finally, we also present some challenges and future research directions to facilitate the exploration of the ability of CVNNs. |
|---|---|
| AbstractList | Complex-valued neural networks(CVNNs)have shown their excellent efficiency compared to their real counter-parts in speech enhancement,image and signal processing.Researchers throughout the years have made many efforts to improve the learning algorithms and activation functions of CVNNs.Since CVNNs have proven to have better performance in handling the naturally complex-valued data and signals,this area of study will grow and expect the arrival of some effective improvements in the future.Therefore,there exists an obvious reason to provide a comprehensive survey paper that systemati-cally collects and categorizes the advancement of CVNNs.In this paper,we discuss and summarize the recent advances based on their learning algorithms,activation functions,which is the most challenging part of building a CVNN,and applications.Besides,we outline the structure and applications of complex-valued convolutional,residual and recurrent neural networks.Finally,we also present some challenges and future research directions to facilitate the exploration of the ability of CVNNs. Complex-valued neural networks (CVNNs) have shown their excellent efficiency compared to their real counter-parts in speech enhancement, image and signal processing. Researchers throughout the years have made many efforts to improve the learning algorithms and activation functions of CVNNs. Since CVNNs have proven to have better performance in handling the naturally complex-valued data and signals, this area of study will grow and expect the arrival of some effective improvements in the future. Therefore, there exists an obvious reason to provide a comprehensive survey paper that systematically collects and categorizes the advancement of CVNNs. In this paper, we discuss and summarize the recent advances based on their learning algorithms, activation functions, which is the most challenging part of building a CVNN, and applications. Besides, we outline the structure and applications of complex-valued convolutional, residual and recurrent neural networks. Finally, we also present some challenges and future research directions to facilitate the exploration of the ability of CVNNs. |
| Author | Hasegawa, Hideyuki Lee, ChiYan Gao, Shangce |
| AuthorAffiliation | Faculty of Engineering,University of Toyama,Toyama 930-8555,Japan |
| AuthorAffiliation_xml | – name: Faculty of Engineering,University of Toyama,Toyama 930-8555,Japan |
| Author_xml | – sequence: 1 givenname: ChiYan surname: Lee fullname: Lee, ChiYan email: leechiyan1610@gmail.com organization: Faculty of Engineering, University of Toyama,Toyama,Japan,930-8555 – sequence: 2 givenname: Hideyuki surname: Hasegawa fullname: Hasegawa, Hideyuki email: hasegawa@eng.u-toyama.ac.jp organization: Faculty of Engineering, University of Toyama,Toyama,Japan,930-8555 – sequence: 3 givenname: Shangce surname: Gao fullname: Gao, Shangce email: gaosc@eng.u-toyama.ac.jp organization: Faculty of Engineering, University of Toyama,Toyama,Japan,930-8555 |
| BookMark | eNp9kEtLw0AUhQepYK1du3ATcCeknWfScVeKT4ouqm6HyfTGpqZJnUn68Nc7IVLBhatzuXznHu45RZ2iLAChc4IHhGA5fBzPBhRTOiBYxJwdoS5lVIaSxrxzmKPoBPWdW2KMCRVxJHkXRZNytc5hF77pvIZ58AS11bmXalvaD3cdjIOGsLCAwmUbCGa13cD-DB2nOnfQ_9Eeer29eZnch9Pnu4fJeBoaRnkVak0klkLyNI6xYYKIKMGplqPUb82IcQ4MGDPEjwkQ4HOKDQgwRDKuk5T10FV7d6uLVBfvalnWtvCJ6mu-2CVqv02at_EIY-7hyxZe2_KzBlf90jSSsYgYI9RTw5YytnTOQqrWNltpu1cEq6ZM5ctUzVXVlukd4o_DZJWusrKorM7yf3wXrS8DgEOKHHFJIsq-AaRcgIQ |
| CODEN | IJASJC |
| CitedBy_id | crossref_primary_10_1109_JAS_2023_123387 crossref_primary_10_3390_app15031603 crossref_primary_10_1109_TCE_2024_3515877 crossref_primary_10_1007_s00365_025_09713_8 crossref_primary_10_1038_s41467_024_55321_8 crossref_primary_10_1109_TAES_2024_3443020 crossref_primary_10_1142_S0129183126500294 crossref_primary_10_3390_s25144393 crossref_primary_10_1109_LWC_2023_3309479 crossref_primary_10_1587_nolta_14_175 crossref_primary_10_1016_j_engappai_2024_108352 crossref_primary_10_1109_TSMC_2024_3371164 crossref_primary_10_1109_TNNLS_2024_3384314 crossref_primary_10_1038_s41598_023_40080_1 crossref_primary_10_1109_JLT_2024_3461734 crossref_primary_10_14529_mmp250108 crossref_primary_10_3389_fenvs_2025_1640840 crossref_primary_10_3390_photonics11050431 crossref_primary_10_1016_j_optlaseng_2024_108685 crossref_primary_10_1103_PhysRevResearch_7_013164 crossref_primary_10_1109_JAS_2023_123474 crossref_primary_10_1109_LWC_2024_3476137 crossref_primary_10_1109_TCSII_2024_3486746 crossref_primary_10_1016_j_compbiomed_2025_110691 crossref_primary_10_1016_j_chaos_2023_114432 crossref_primary_10_1016_j_ecosta_2024_06_003 crossref_primary_10_1109_ACCESS_2024_3461572 crossref_primary_10_1109_TCSI_2024_3462806 crossref_primary_10_1109_TNNLS_2023_3282231 crossref_primary_10_3788_COL202523_090501 crossref_primary_10_3390_rs15215085 crossref_primary_10_1109_TMTT_2023_3319835 crossref_primary_10_1121_10_0036384 crossref_primary_10_1002_mp_17909 crossref_primary_10_1016_j_neucom_2023_126358 crossref_primary_10_1109_TAES_2024_3353725 crossref_primary_10_3389_frai_2024_1353873 crossref_primary_10_1016_j_neunet_2025_107375 crossref_primary_10_1016_j_cma_2024_117406 crossref_primary_10_1016_j_engappai_2025_111601 crossref_primary_10_1016_j_neunet_2024_106664 crossref_primary_10_3390_app15126599 crossref_primary_10_1109_JIOT_2022_3228748 crossref_primary_10_1109_TAES_2024_3382222 crossref_primary_10_1109_JAS_2024_124335 crossref_primary_10_3390_s25082489 crossref_primary_10_1007_s10462_025_11123_y crossref_primary_10_1109_ACCESS_2024_3514781 crossref_primary_10_1109_JSTQE_2024_3493857 crossref_primary_10_1002_asjc_3631 crossref_primary_10_1109_TASLP_2024_3444492 crossref_primary_10_3390_electronics14101959 crossref_primary_10_1109_LCSYS_2025_3604015 crossref_primary_10_3390_stats8010020 crossref_primary_10_1109_LGRS_2024_3411554 crossref_primary_10_1364_AO_545152 crossref_primary_10_1016_j_asoc_2024_112682 crossref_primary_10_3390_app15169179 crossref_primary_10_3390_s25020353 crossref_primary_10_1016_j_neucom_2025_129412 crossref_primary_10_1109_JSEN_2025_3525674 crossref_primary_10_1098_rsta_2024_0169 crossref_primary_10_1186_s13636_024_00337_7 crossref_primary_10_1007_s11280_023_01210_x crossref_primary_10_1007_s44439_025_00002_7 crossref_primary_10_1109_ACCESS_2023_3280454 crossref_primary_10_1109_JAS_2023_124026 crossref_primary_10_3390_electronics12204380 crossref_primary_10_1007_s12204_024_2778_0 crossref_primary_10_1038_s41598_025_14872_6 crossref_primary_10_1109_ACCESS_2025_3535472 crossref_primary_10_1109_TSMC_2024_3490183 crossref_primary_10_1121_10_0028230 crossref_primary_10_1016_j_knosys_2023_110788 crossref_primary_10_1002_ett_70148 crossref_primary_10_1117_1_JRS_19_026504 crossref_primary_10_1109_TIM_2025_3608349 crossref_primary_10_1007_s11571_024_10129_6 crossref_primary_10_1109_TSMC_2024_3387408 crossref_primary_10_1140_epjs_s11734_024_01372_3 crossref_primary_10_1364_AO_545150 crossref_primary_10_1088_1361_6560_ad0997 crossref_primary_10_1093_gji_ggaf348 crossref_primary_10_1007_s11063_024_11472_9 crossref_primary_10_1109_JSTARS_2025_3593845 crossref_primary_10_1016_j_asoc_2023_110306 crossref_primary_10_1007_s00521_024_10368_y crossref_primary_10_1109_TCSS_2023_3335485 crossref_primary_10_3390_jimaging11080286 crossref_primary_10_3390_math11071701 crossref_primary_10_1109_JSTARS_2023_3292315 crossref_primary_10_1016_j_eswa_2025_128893 crossref_primary_10_1109_JAS_2023_123489 crossref_primary_10_1109_MSP_2024_3389496 |
| Cites_doi | 10.1109/JAS.2021.1004018 10.1049/el:19921186 10.1109/JAS.2019.1911732 10.1109/ICASSP.2018.8462556 10.21437/Interspeech.2017-584 10.1109/JAS.2021.1004174 10.1016/j.neucom.2012.08.010 10.1109/ICSMC.2010.5642294 10.1587/transinf.E96.D.2257 10.1109/IJCNN.2012.6252535 10.1109/RadarConf2147009.2021.9455169 10.1117/12.145076 10.1109/TNN.2002.1000133 10.1109/JAS.2021.1003817 10.1109/IGARSS.2019.8898217 10.1016/j.neucom.2008.04.006 10.1109/ACCESS.2015.2506601 10.1109/ACCESS.2019.2924548 10.1016/S0893-6080(03)00138-2 10.1007/978-3-319-25393-0_49 10.1109/ICSMC.2006.384789 10.3906/elk-1408-157 10.1109/TNNLS.2020.2977614 10.1109/JAS.2021.1004027 10.1109/FSKD.2017.8393327 10.1109/ICACI.2016.7449840 10.1109/JAS.2020.1003048 10.1016/j.cmpb.2016.01.001 10.3390/rs11050522 10.1109/TNSE.2020.3048902 10.1109/TSP.2013.6614053 10.1109/CVPR.2016.90 10.1260/2040-2295.6.3.281 10.1109/JAS.2021.1004084 10.1109/JAS.2020.1003114 10.1016/j.neunet.2019.09.036 10.23919/APSIPA.2018.8659610 10.1109/78.127967 10.1109/ICSMC.1998.727520 10.1109/LGRS.2019.2953892 10.1162/NECO_a_00729 10.1109/TNNLS.2017.2770172 10.3906/elk-0908-137 10.1109/NNSP.2000.889414 10.1109/TNNLS.2013.2294638 10.1007/978-3-319-92537-0_8 10.1109/72.728394 10.1109/GlobalSIP.2016.7905999 10.1109/IJCNN.1992.227274 10.1016/j.neucom.2014.04.075 10.1007/978-3-642-24955-6_65 10.1109/WNYIPW.2019.8923089 10.3390/electronics10060752 10.1109/ICoAC.2013.6921958 10.1016/j.neunet.2013.01.008 10.1016/j.neucom.2005.03.002 10.1109/TBME.2018.2883085 10.1504/IJBET.2014.064651 10.1109/JAS.2020.1003539 10.1109/JAS.2021.1003871 10.1016/j.patrec.2019.08.021 10.1007/s00521-018-3920-4 10.1109/SEST.2018.8495637 10.4018/978-1-60566-214-5 10.1109/tnnls.2021.3105901 10.1109/TNNLS.2019.2955567 10.1109/IJCNN.2009.5178754 10.23919/SICE.2018.8492660 10.1109/SSCI.2018.8628865 10.1186/s12859-016-1209-0 10.1109/JAS.2020.1003390 10.1109/TNN.2007.894038 10.1109/JAS.2019.1911825 10.1016/j.neunet.2016.11.001 10.1007/s11071-018-4053-0 10.1007/s11063-014-9379-0 10.1109/tgrs.2020.3047112 10.1109/JAS.2021.1003982 10.1162/isal_a_00406 10.1109/TNN.2011.2144618 10.1109/PROC.1975.9807 10.1109/ITSC45102.2020.9294335 10.1007/s11517-017-1721-z 10.1109/IJCNN.2011.6033400 10.1109/IGARSS47720.2021.9554116 10.1007/s00500-018-3216-8 10.1007/s11071-015-2147-5 10.1007/s11063-017-9621-7 10.1016/j.neucom.2019.06.112 10.1109/JAS.2020.1003090 10.1007/978-3-642-24955-6_66 10.1109/ICIP.2017.8297024 10.1016/j.neucom.2019.10.064 10.1016/j.mri.2020.02.002 10.1109/IJCNN.2015.7280450 10.1007/978-3-319-92537-0_9 10.5772/13295 10.1007/s11063-016-9537-7 10.1109/JAS.2020.1003462 10.1142/S0129065795000299 10.1109/ICoICT.2015.7231422 10.1038/s41467-020-20719-7 10.1016/j.neunet.2020.01.011 10.1109/IJCNN48605.2020.9207122 10.1016/j.neucom.2009.06.004 10.3103/S1060992X1201002X 10.1016/j.neunet.2018.01.016 10.1016/j.cmpb.2018.07.015 10.1109/IMFEDK48381.2019.8950700 10.1109/TSMC.2019.2901277 10.1109/SYNASC.2014.44 10.1109/TGRS.2019.2917214 10.1016/j.neucom.2020.04.114 10.1007/978-3-642-20353-4 10.1016/j.neucom.2009.05.017 10.1162/neco_a_00990 10.1109/SIPROCESS.2019.8868708 10.1007/978-3-319-24574-4_28 10.1109/TSMC.2021.3055501 10.1109/TNNLS.2012.2195028 10.1109/IJCNN.2011.6033384 10.1016/j.renene.2017.01.019 10.1162/NECO_a_00254 10.1007/978-3-642-27632-3 10.1109/JAS.2021.1004045 10.1109/78.134446 10.1016/S0893-6080(97)00036-1 10.1109/TNN.2004.839354 10.1016/j.amc.2013.12.027 10.1007/978-3-030-00129-2_4 10.1162/089976603321891846 10.21437/Interspeech.2016-300 10.1109/ICoAC.2012.6416850 10.1109/JAS.2020.1003402 10.1109/ACCESS.2020.3004591 10.1007/978-3-642-13232-2_6 10.1016/j.neunet.2019.02.006 10.1109/ICASSP.1991.150526 10.1016/j.isprsjprs.2019.09.002 10.1109/TCYB.2018.2838573 10.1142/s0129065700000090 10.1109/ECCE.2012.6342351 10.1016/j.patcog.2017.10.013 10.1038/nature14539 10.1109/SIU.2010.5650970 10.1109/TGRS.2017.2743222 10.1109/JAS.2020.1003393 10.1109/TGRS.2020.2976694 10.1109/ISCAS45731.2020.9181225 10.1109/82.142037 10.1016/j.neunet.2019.09.032 10.1109/JAS.2021.1004141 10.3115/v1/d14-1179 10.1016/j.ins.2011.11.003 10.1109/WNYIPW.2017.8356260 10.1109/LGRS.2018.2866567 10.1109/ASET.2018.8379880 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.4103/2228-7477.112144 10.1109/TMI.2016.2548501 10.1142/9789812791184_0010 10.1109/JAS.2021.1004051 10.1109/TAC.2017.2669580 10.1016/S0893-6080(97)00118-4 10.1007/s10916-008-9205-1 10.1109/JAS.2020.1003465 10.1109/TNNLS.2020.3030565 10.1109/ISCAS.2010.5537907 10.1109/TNNLS.2015.2494361 10.1016/j.neucom.2007.07.037 10.1109/TNNLS.2013.2288943 10.1016/j.neucom.2020.01.020 10.1109/ACCESS.2019.2938896 10.1109/JBHI.2014.2387795 10.1007/s11460-011-0125-3 10.1016/j.neucom.2007.07.025 10.1016/j.neucom.2019.06.051 10.1016/j.jfranklin.2015.11.014 10.1109/IJCNN.2017.7965936 10.1155/2009/329173 10.1016/0031-3203(92)90101-N 10.1162/08997660460734001 10.1007/s00521-015-2142-2 10.21609/jiki.v11i2.617 10.1109/TETCI.2018.2872600 10.1016/S0893-6080(03)00168-0 10.1109/ICII.2001.983106 10.1016/j.neunet.2021.01.014 10.1016/j.renene.2005.07.006 10.1109/DSMP.2018.8478463 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1109/JAS.2022.105743 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2329-9274 |
| EndPage | 1426 |
| ExternalDocumentID | zdhxb_ywb202208004 10_1109_JAS_2022_105743 9849162 |
| Genre | orig-research |
| GroupedDBID | -0I -0Y -SI -S~ 0R~ 4.4 5VR 6IK 92M 97E 9D9 9DI AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AFUIB AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ Q-- RIA RIE RT9 T8Y TCJ TGT U1F U1G U5I U5S AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX R-I RIG |
| ID | FETCH-LOGICAL-c324t-aa1909594f770c35156b0fa98f095c8344e3e33c1834be1e4d20ce5ec1934abf3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 138 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000838825000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2329-9266 |
| IngestDate | Thu May 29 04:10:31 EDT 2025 Sun Sep 07 03:46:31 EDT 2025 Tue Nov 18 21:46:26 EST 2025 Sat Nov 29 03:31:06 EST 2025 Wed Aug 27 02:23:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Complex activation function complex-valued neural network deep learning complex backpro-pagation algorithm complex-valued learning algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-aa1909594f770c35156b0fa98f095c8344e3e33c1834be1e4d20ce5ec1934abf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2697563312 |
| PQPubID | 2040495 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2697563312 wanfang_journals_zdhxb_ywb202208004 ieee_primary_9849162 crossref_citationtrail_10_1109_JAS_2022_105743 crossref_primary_10_1109_JAS_2022_105743 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE/CAA journal of automatica sinica |
| PublicationTitleAbbrev | JAS |
| PublicationTitle_FL | IEEE/CAA Journal of Automatica Sinica |
| PublicationYear | 2022 |
| Publisher | Chinese Association of Automation (CAA) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Faculty of Engineering,University of Toyama,Toyama 930-8555,Japan |
| Publisher_xml | – name: Chinese Association of Automation (CAA) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Faculty of Engineering,University of Toyama,Toyama 930-8555,Japan |
| References | ref57 ref207 ref56 ref208 ref59 ref205 ref58 ref206 ref53 Olanrewaju (ref193) 2011; 5 ref203 ref52 ref204 ref55 ref201 ref54 ref202 ref209 Diamond (ref159) 2017 ref210 ref211 ref51 ref50 ref46 ref218 ref45 ref219 ref48 ref216 ref217 ref42 ref214 ref41 ref215 ref212 ref43 ref213 Zimmermann (ref44) 2011 ref49 Kumar (ref139) 2020; 7 ref8 ref7 Reichert (ref19) 2014 ref9 ref4 ref3 ref6 ref5 ref100 ref221 ref220 ref35 ref34 ref37 ref31 ref30 ref32 Mochida (ref68) 2017; 117 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref200 Wang (ref119) ref128 ref129 Arjovsky (ref36) 2016; 48 ref97 ref126 ref96 ref127 ref99 ref124 ref98 Bassey (ref14) 2021; abs/2101.12249 ref93 ref133 ref92 ref95 ref131 ref132 ref130 ref91 Yeats (ref47) 2021 ref137 ref85 ref138 ref88 ref87 ref136 Kiziltas (ref142) 2019; 3 ref82 ref144 ref145 ref83 ref143 ref140 ref141 ref79 ref108 Wisdom (ref118); 29 ref78 ref109 Kitajima (ref173) 2010 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 Choi (ref101) 2019 Virtue (ref94) 2019 ref71 Trabelsi (ref81) 2018 ref70 ref112 ref73 ref72 ref110 Ji (ref188) 2017 ref67 Inturrisi (ref196) 2021 ref117 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 Cole (ref89) ref60 ref122 ref123 ref62 ref120 ref61 ref121 ref168 ref169 Guberman (ref33) 2016 LeCun (ref86) 1995 ref170 Jing (ref134) 2017; 70 Jalab (ref40) 2011; 6 ref177 ref178 ref175 ref176 ref174 ref171 ref172 ref179 Wolter (ref135); 31 ref180 ref181 ref189 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref149 ref146 ref147 Isaacson (ref69) 2006 Agostinelli (ref195) 2015 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref157 ref158 ref166 ref164 ref165 ref162 ref163 ref160 ref161 ref13 ref12 ref15 ref11 ref10 ref17 ref16 ref18 Vasudeva (ref125) 2020 Sarroff (ref111) 2015 Mönning (ref80) 2018 ref2 ref1 Aizenberg (ref167) 2011; 353 ref191 ref192 ref190 ref199 ref197 ref198 ref194 LeCun (ref84); 2 Danihelka (ref90) 2016; 48 |
| References_xml | – ident: ref211 doi: 10.1109/JAS.2021.1004018 – ident: ref37 doi: 10.1049/el:19921186 – ident: ref63 doi: 10.1109/JAS.2019.1911732 – ident: ref115 doi: 10.1109/ICASSP.2018.8462556 – ident: ref123 doi: 10.21437/Interspeech.2017-584 – ident: ref201 doi: 10.1109/JAS.2021.1004174 – ident: ref62 doi: 10.1016/j.neucom.2012.08.010 – ident: ref67 doi: 10.1109/ICSMC.2010.5642294 – ident: ref5 doi: 10.1587/transinf.E96.D.2257 – ident: ref191 doi: 10.1109/IJCNN.2012.6252535 – ident: ref103 doi: 10.1109/RadarConf2147009.2021.9455169 – ident: ref56 doi: 10.1117/12.145076 – ident: ref24 doi: 10.1109/TNN.2002.1000133 – ident: ref198 doi: 10.1109/JAS.2021.1003817 – ident: ref124 doi: 10.1109/IGARSS.2019.8898217 – ident: ref25 doi: 10.1016/j.neucom.2008.04.006 – ident: ref61 doi: 10.1109/ACCESS.2015.2506601 – ident: ref128 doi: 10.1109/ACCESS.2019.2924548 – year: 2017 ident: ref159 article-title: Unrolled optimization with deep priors publication-title: arXiv preprint – ident: ref52 doi: 10.1016/S0893-6080(03)00138-2 – year: 2018 ident: ref80 article-title: Evaluation of complex-valued neural networks on real-valued classification tasks publication-title: arXiv preprint – ident: ref194 doi: 10.1007/978-3-319-25393-0_49 – volume: 2 start-page: 396 volume-title: Advances in Neural Information Processing Systems ident: ref84 article-title: Handwritten digit recognition with a back-propagation network – ident: ref65 doi: 10.1109/ICSMC.2006.384789 – ident: ref145 doi: 10.3906/elk-1408-157 – ident: ref153 doi: 10.1109/TNNLS.2020.2977614 – ident: ref202 doi: 10.1109/JAS.2021.1004027 – ident: ref190 doi: 10.1109/FSKD.2017.8393327 – ident: ref185 doi: 10.1109/ICACI.2016.7449840 – ident: ref205 doi: 10.1109/JAS.2020.1003048 – ident: ref146 doi: 10.1016/j.cmpb.2016.01.001 – ident: ref151 doi: 10.3390/rs11050522 – ident: ref210 doi: 10.1109/TNSE.2020.3048902 – ident: ref155 doi: 10.1109/TSP.2013.6614053 – ident: ref138 doi: 10.1109/CVPR.2016.90 – ident: ref26 doi: 10.1260/2040-2295.6.3.281 – ident: ref219 doi: 10.1109/JAS.2021.1004084 – ident: ref218 doi: 10.1109/JAS.2020.1003114 – ident: ref206 doi: 10.1016/j.neunet.2019.09.036 – start-page: 1231 volume-title: Proc. IEEE 29th Chinese Control And Decision Conf. year: 2017 ident: ref188 article-title: Prediction of soil moisture with complex-valued neural network – ident: ref169 doi: 10.23919/APSIPA.2018.8659610 – ident: ref1 doi: 10.1109/78.127967 – ident: ref113 doi: 10.1109/ICSMC.1998.727520 – ident: ref102 doi: 10.1109/LGRS.2019.2953892 – ident: ref49 doi: 10.1162/NECO_a_00729 – ident: ref220 doi: 10.1109/TNNLS.2017.2770172 – ident: ref154 doi: 10.3906/elk-0908-137 – volume-title: Proc. 2nd Int. Conf. Learning Representations year: 2014 ident: ref19 article-title: Neuronal synchrony in complex-valued deep networks – ident: ref32 doi: 10.1109/NNSP.2000.889414 – volume-title: Proc. Int. Conf. Learning Representations year: 2019 ident: ref101 article-title: Phase-aware speech enhancement with deep complex U-Net – ident: ref110 doi: 10.1109/TNNLS.2013.2294638 – ident: ref127 doi: 10.1007/978-3-319-92537-0_8 – year: 2016 ident: ref33 article-title: On complex valued convolutional neural networks publication-title: arXiv preprint – ident: ref38 doi: 10.1109/72.728394 – ident: ref96 doi: 10.1109/GlobalSIP.2016.7905999 – ident: ref27 doi: 10.1109/IJCNN.1992.227274 – ident: ref60 doi: 10.1016/j.neucom.2014.04.075 – ident: ref149 doi: 10.1007/978-3-642-24955-6_65 – ident: ref164 doi: 10.1109/WNYIPW.2019.8923089 – ident: ref140 doi: 10.3390/electronics10060752 – ident: ref171 doi: 10.1109/ICoAC.2013.6921958 – ident: ref161 doi: 10.1016/j.neunet.2013.01.008 – volume: 48 start-page: 1986 volume-title: Proc. 33rd Int. Conf. Machine Learning year: 2016 ident: ref90 article-title: Associative long short-term memory – ident: ref30 doi: 10.1016/j.neucom.2005.03.002 – ident: ref168 doi: 10.1109/TBME.2018.2883085 – ident: ref156 doi: 10.1504/IJBET.2014.064651 – ident: ref203 doi: 10.1109/JAS.2020.1003539 – ident: ref217 doi: 10.1109/JAS.2021.1003871 – ident: ref137 doi: 10.1016/j.patrec.2019.08.021 – start-page: 39 year: 2006 ident: ref69 article-title: Metacognitive knowledge monitoring and self-regulated learning publication-title: Journal of the Scholarship of Teaching and Learning – ident: ref162 doi: 10.1007/s00521-018-3920-4 – ident: ref174 doi: 10.1109/SEST.2018.8495637 – ident: ref43 doi: 10.4018/978-1-60566-214-5 – ident: ref144 doi: 10.1109/tnnls.2021.3105901 – ident: ref215 doi: 10.1109/TNNLS.2019.2955567 – ident: ref9 doi: 10.1109/IJCNN.2009.5178754 – ident: ref34 doi: 10.23919/SICE.2018.8492660 – ident: ref132 doi: 10.1109/SSCI.2018.8628865 – volume-title: Complex-valued deep learning with applications to magnetic resonance image synthesis year: 2019 ident: ref94 – ident: ref189 doi: 10.1186/s12859-016-1209-0 – ident: ref208 doi: 10.1109/JAS.2020.1003390 – ident: ref21 doi: 10.1109/TNN.2007.894038 – ident: ref87 doi: 10.1109/JAS.2019.1911825 – ident: ref186 doi: 10.1016/j.neunet.2016.11.001 – ident: ref187 doi: 10.1007/s11071-018-4053-0 – ident: ref8 doi: 10.1007/s11063-014-9379-0 – ident: ref105 doi: 10.1109/tgrs.2020.3047112 – ident: ref204 doi: 10.1109/JAS.2021.1003982 – ident: ref207 doi: 10.1162/isal_a_00406 – ident: ref71 doi: 10.1109/TNN.2011.2144618 – ident: ref35 doi: 10.1109/PROC.1975.9807 – ident: ref152 doi: 10.1109/ITSC45102.2020.9294335 – ident: ref157 doi: 10.1007/s11517-017-1721-z – ident: ref17 doi: 10.1109/IJCNN.2011.6033400 – ident: ref104 doi: 10.1109/IGARSS47720.2021.9554116 – ident: ref45 doi: 10.1007/s00500-018-3216-8 – volume-title: Proc. ESANN year: 2011 ident: ref44 article-title: Comparison of the complex valued and real valued neural networks trained with gradient descent and random search algorithms – ident: ref181 doi: 10.1007/s11071-015-2147-5 – ident: ref55 doi: 10.1007/s11063-017-9621-7 – ident: ref199 doi: 10.1016/j.neucom.2019.06.112 – ident: ref209 doi: 10.1109/JAS.2020.1003090 – year: 2021 ident: ref196 article-title: Piecewise linear units improve deep neural networks publication-title: arXiv preprint – ident: ref57 doi: 10.1007/978-3-642-24955-6_66 – ident: ref4 doi: 10.1109/ICIP.2017.8297024 – ident: ref136 doi: 10.1016/j.neucom.2019.10.064 – ident: ref93 doi: 10.1016/j.mri.2020.02.002 – ident: ref54 doi: 10.1109/IJCNN.2015.7280450 – ident: ref122 doi: 10.1007/978-3-319-92537-0_9 – ident: ref66 doi: 10.5772/13295 – ident: ref163 doi: 10.1007/s11063-016-9537-7 – ident: ref200 doi: 10.1109/JAS.2020.1003462 – ident: ref16 doi: 10.1142/S0129065795000299 – ident: ref148 doi: 10.1109/ICoICT.2015.7231422 – ident: ref143 doi: 10.1038/s41467-020-20719-7 – ident: ref74 doi: 10.1016/j.neunet.2020.01.011 – ident: ref106 doi: 10.1109/IJCNN48605.2020.9207122 – ident: ref20 doi: 10.1016/j.neucom.2009.06.004 – ident: ref192 doi: 10.3103/S1060992X1201002X – start-page: 3610 volume-title: Proc. IEEE SICE Annu. Conf. year: 2010 ident: ref173 article-title: Output prediction of wind power generation system using complex-valued neural network – ident: ref76 doi: 10.1016/j.neunet.2018.01.016 – ident: ref95 doi: 10.1016/j.cmpb.2018.07.015 – volume: 70 start-page: 1733 volume-title: Proc. 34th Int. Conf. Machine Learning year: 2017 ident: ref134 article-title: Tunable efficient unitary neural networks (EUNN) and their application to RNN – year: 2015 ident: ref111 article-title: Learning representations using complex-valued nets publication-title: arXiv preprint – volume-title: Proc. Int. Conf. Learning Representations year: 2015 ident: ref195 article-title: Learning activation functions to improve deep neural networks – ident: ref160 doi: 10.1109/IMFEDK48381.2019.8950700 – ident: ref178 doi: 10.1109/TSMC.2019.2901277 – volume: 48 start-page: 1120 volume-title: Proc. 33rd Int. Conf. Machine Learning, ser. Proc. Machine Learning Research year: 2016 ident: ref36 article-title: Unitary evolution recurrent neural networks – ident: ref50 doi: 10.1109/SYNASC.2014.44 – ident: ref15 doi: 10.1109/TGRS.2019.2917214 – ident: ref53 doi: 10.1016/j.neucom.2020.04.114 – volume: 117 start-page: 1 issue: 112 year: 2017 ident: ref68 article-title: A complex-valued reinforcement learning method using complex-valued neural networks publication-title: IEICE Technical Report – volume: 353 volume-title: Complex-Valued Neural Networks With Multi-Valued Neurons year: 2011 ident: ref167 doi: 10.1007/978-3-642-20353-4 – ident: ref51 doi: 10.1016/j.neucom.2009.05.017 – ident: ref91 doi: 10.1162/neco_a_00990 – ident: ref100 doi: 10.1109/SIPROCESS.2019.8868708 – ident: ref158 doi: 10.1007/978-3-319-24574-4_28 – ident: ref48 doi: 10.1109/TSMC.2021.3055501 – ident: ref107 doi: 10.1109/TNNLS.2012.2195028 – volume-title: Proc. 26th Annu. Meeting of ISMRM ident: ref119 article-title: Complex-valued residual network learning for parallel MR imaging – ident: ref72 doi: 10.1109/IJCNN.2011.6033384 – ident: ref6 doi: 10.1016/j.renene.2017.01.019 – ident: ref70 doi: 10.1162/NECO_a_00254 – start-page: 11953 volume-title: Proc. Int. Conf. Machine Learning year: 2021 ident: ref47 article-title: Improving gradient regularization using complex-valued neural networks – ident: ref10 doi: 10.1007/978-3-642-27632-3 – ident: ref213 doi: 10.1109/JAS.2021.1004045 – ident: ref3 doi: 10.1109/78.134446 – ident: ref42 doi: 10.1016/S0893-6080(97)00036-1 – ident: ref176 doi: 10.1109/TNN.2004.839354 – ident: ref109 doi: 10.1016/j.amc.2013.12.027 – ident: ref28 doi: 10.1007/978-3-030-00129-2_4 – ident: ref79 doi: 10.1162/089976603321891846 – ident: ref170 doi: 10.21437/Interspeech.2016-300 – ident: ref175 doi: 10.1109/ICoAC.2012.6416850 – volume: 3 start-page: 1 issue: 1 year: 2019 ident: ref142 article-title: Skin segmentation by using complex valued neural network with HSV color spaces publication-title: Int. Journal of Multidisciplinary Studies and Innovative Technologies – ident: ref214 doi: 10.1109/JAS.2020.1003402 – ident: ref126 doi: 10.1109/ACCESS.2020.3004591 – ident: ref13 doi: 10.1007/978-3-642-13232-2_6 – ident: ref182 doi: 10.1016/j.neunet.2019.02.006 – ident: ref41 doi: 10.1109/ICASSP.1991.150526 – ident: ref46 doi: 10.1016/j.isprsjprs.2019.09.002 – volume: 31 start-page: 10536 volume-title: Advances in Neural Information Processing Systems ident: ref135 article-title: Complex gated recurrent neural networks – ident: ref177 doi: 10.1109/TCYB.2018.2838573 – ident: ref23 doi: 10.1142/s0129065700000090 – ident: ref112 doi: 10.1109/ECCE.2012.6342351 – ident: ref129 doi: 10.1016/j.patcog.2017.10.013 – ident: ref92 doi: 10.1038/nature14539 – ident: ref150 doi: 10.1109/SIU.2010.5650970 – ident: ref29 doi: 10.1109/TGRS.2017.2743222 – ident: ref212 doi: 10.1109/JAS.2020.1003393 – ident: ref221 doi: 10.1109/TGRS.2020.2976694 – volume: abs/2101.12249 year: 2021 ident: ref14 article-title: A survey of complex-valued neural networks publication-title: ArXiv – ident: ref120 doi: 10.1109/ISCAS45731.2020.9181225 – volume: 5 start-page: 1251 issue: 7 year: 2011 ident: ref193 article-title: Forgery detection in medical images using complex valued neural network (CVNN) publication-title: Australian Journal of Basic and Applied Sciences – ident: ref2 doi: 10.1109/82.142037 – ident: ref184 doi: 10.1016/j.neunet.2019.09.032 – ident: ref64 doi: 10.1109/JAS.2021.1004141 – ident: ref133 doi: 10.3115/v1/d14-1179 – ident: ref59 doi: 10.1016/j.ins.2011.11.003 – ident: ref97 doi: 10.1109/WNYIPW.2017.8356260 – ident: ref98 doi: 10.1109/LGRS.2018.2866567 – volume: 6 start-page: 1766 issue: 7 year: 2011 ident: ref40 article-title: New activation functions for complex-valued neural network publication-title: Int. Journal of Physical Sciences – year: 2020 ident: ref125 article-title: CoVeGAN: Complex-valued generative adversarial network for compressive sensing MR image reconstruction publication-title: arXiv preprint – start-page: 4714 volume-title: Proc. 27th Annu. Meeting of ISMRM ident: ref89 article-title: Complex-valued convolutional neural networks for MRI reconstruction – ident: ref179 doi: 10.1109/ASET.2018.8379880 – ident: ref83 doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – ident: ref7 doi: 10.4103/2228-7477.112144 – volume: 29 start-page: 4880 volume-title: Advances in Neural Information Processing Systems ident: ref118 article-title: Full-capacity unitary recurrent neural networks – ident: ref88 doi: 10.1109/TMI.2016.2548501 – ident: ref114 doi: 10.1142/9789812791184_0010 – ident: ref131 doi: 10.1109/JAS.2021.1004051 – ident: ref180 doi: 10.1109/TAC.2017.2669580 – ident: ref77 doi: 10.1016/S0893-6080(97)00118-4 – ident: ref39 doi: 10.1007/s10916-008-9205-1 – ident: ref216 doi: 10.1109/JAS.2020.1003465 – ident: ref121 doi: 10.1109/TNNLS.2020.3030565 – ident: ref85 doi: 10.1109/ISCAS.2010.5537907 – ident: ref197 doi: 10.1109/TNNLS.2015.2494361 – ident: ref78 doi: 10.1016/j.neucom.2007.07.037 – ident: ref108 doi: 10.1109/TNNLS.2013.2288943 – ident: ref141 doi: 10.1016/j.neucom.2020.01.020 – ident: ref99 doi: 10.1109/ACCESS.2019.2938896 – ident: ref165 doi: 10.1109/JBHI.2014.2387795 – ident: ref12 doi: 10.1007/s11460-011-0125-3 – ident: ref58 doi: 10.1016/j.neucom.2007.07.025 – ident: ref117 doi: 10.1016/j.neucom.2019.06.051 – ident: ref183 doi: 10.1016/j.jfranklin.2015.11.014 – volume: 7 start-page: 251 issue: 2 year: 2020 ident: ref139 article-title: Detection of microcalcifications in digital mammogram using curvelet fractal texture features publication-title: European Journal of Molecular & Clinical Medicine – ident: ref130 doi: 10.1109/IJCNN.2017.7965936 – ident: ref22 doi: 10.1155/2009/329173 – ident: ref73 doi: 10.1016/0031-3203(92)90101-N – ident: ref18 doi: 10.1162/08997660460734001 – ident: ref172 doi: 10.1007/s00521-015-2142-2 – ident: ref147 doi: 10.21609/jiki.v11i2.617 – ident: ref31 doi: 10.1109/TETCI.2018.2872600 – start-page: 255 volume-title: The Handbook of Brain Theory and Neural Networks year: 1995 ident: ref86 article-title: Convolutional networks for images, speech, and time series – ident: ref11 doi: 10.1016/S0893-6080(03)00168-0 – volume-title: Proc. Int. Conf. Learning Representations year: 2018 ident: ref81 article-title: Deep complex networks – ident: ref116 doi: 10.1109/ICII.2001.983106 – ident: ref75 doi: 10.1016/j.neunet.2021.01.014 – ident: ref82 doi: 10.1016/j.renene.2005.07.006 – ident: ref166 doi: 10.1109/DSMP.2018.8478463 |
| SSID | ssj0001257694 |
| Score | 2.6176636 |
| Snippet | Complex-valued neural networks (CVNNs) have shown their excellent efficiency compared to their real counter-parts in speech enhancement, image and signal... Complex-valued neural networks(CVNNs)have shown their excellent efficiency compared to their real counter-parts in speech enhancement,image and signal... |
| SourceID | wanfang proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1406 |
| SubjectTerms | Algorithms Complex activation function complex backpropagation algorithm complex-valued learning algorithm complex-valued neural network deep learning Image enhancement Image segmentation Machine learning Magnetic resonance imaging Neural networks Pattern classification Recurrent neural networks Signal processing Signal processing algorithms Speech enhancement Speech processing Wind forecasting |
| Title | Complex-Valued Neural Networks: A Comprehensive Survey |
| URI | https://ieeexplore.ieee.org/document/9849162 https://www.proquest.com/docview/2697563312 https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202208004 |
| Volume | 9 |
| WOSCitedRecordID | wos000838825000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2329-9274 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257694 issn: 2329-9266 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61KOjBVxWrVRb04MHodpN9xFsRRUSKUJXeljxmrVC20nf99U52t7WCHrwtm0lYJpnMN9nJN4ScRToAT_OIykhzih6CUekpoEYwI0wCvs4Y-F4fw2YzarfFU4lcLO7CAECWfAaX9jH7l296emSPyq5ExBHN4Ia7EoZhfldr6TwFkXNW9xAxgqACHU_B5FN3xdVDo4WxoOdlZW05--GEsqoqPwDm2kSmiUzfljzN3db_vnGbbBaI0mnkS2CHlCDdJRtLPIMVElir78KUvsruCIxjGTmwSzNPAR9cOw3HSvShk6ezO61RfwyzPfJyd_t8c0-LgglUIy4aUinRvQtf8CQMXc0QqgTKTaSIEnyrbUUNYMCYRjPmCurAjedq8EEjiuNSJWyflNNeCgfEsRuoChRXBuMp3zciMpbXRYNnQhlJUyWXcw3GumATt0UtunEWVbgiRpXHVuVxrvIqOV90-MiJNP4WrVi9LsQKlVZJbT5FcWFog9gLROgHjNWx-bSYtu_WT9OZqng2UXZ0i4354e9jH5F1K5Jn9tVIedgfwTFZ1ePh-6B_kq20L4Kgzw4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hoGo50BaoupTSSHDgUC_Z2HmY26oq4rGskHiIm-XHBJBWodoHu_DrO07Cskhw4BbFYysaezzfOONvALYzm2BkRcZ0ZgUjD8GZjgwyJ7mTLsfYlgx8l520282uruTpHPye3oVBxDL5DJv-sfyX7-7syB-V7cpMEJqhDXchFiJqVbe1Zk5UCDuXlQ8JJUgmyfXUXD6tUO4etc8oGoyisrCt4C_cUFlX5QXE_DDWRa6L6xlfs__5fV_5BZZrTBm0q0XwFeawWIGlGabBVUi83fdwwi51b4Qu8Jwc1KVbJYEP9oJ24CX6eFMltAdno_49PqzBxf7f8z8HrC6ZwCwhoyHTmhy8jKXI0zS0nMBKYsJcyyynt9bX1ECOnFsyZGGwhcJFocUYLeE4oU3Ov8F8cVfgdwj8FmoSI4yjiCqOncycZ3axGLlUZ9o1oPmkQWVrPnFf1qKnyrgilIpUrrzKVaXyBuxMO_yrqDTeFl31ep2K1SptwMbTFKna1AYqSmQaJ5y3qHmrnrbn1kd3MzHqYWz86B4di_XXx_4FHw_OTzqqc9g9_gGfvHiV57cB88P-CH_Cor0f3g76m-Wq-w9zedJV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex-Valued+Neural+Networks%3A+A+Comprehensive+Survey&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Lee%2C+ChiYan&rft.au=Hasegawa%2C+Hideyuki&rft.au=Gao%2C+Shangce&rft.date=2022-08-01&rft.issn=2329-9266&rft.eissn=2329-9274&rft.volume=9&rft.issue=8&rft.spage=1406&rft.epage=1426&rft_id=info:doi/10.1109%2FJAS.2022.105743&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JAS_2022_105743 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg |