Mapping Plant Diversity Based on Combined SENTINEL-1/2 Data—Opportunities for Subtropical Mountainous Forests

Plant diversity is an important parameter in maintaining forest ecosystem services, functions and stability. Timely and accurate monitoring and evaluation of large-area wall-to-wall maps on plant diversity and its spatial heterogeneity are crucial for the conservation and management of forest resour...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 14; no. 3; p. 492
Main Authors: Yang, Qichi, Wang, Lihui, Huang, Jinliang, Lu, Lijie, Li, Yang, Du, Yun, Ling, Feng
Format: Journal Article
Language:English
Published: Basel MDPI AG 20.01.2022
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Plant diversity is an important parameter in maintaining forest ecosystem services, functions and stability. Timely and accurate monitoring and evaluation of large-area wall-to-wall maps on plant diversity and its spatial heterogeneity are crucial for the conservation and management of forest resources. However, traditional botanical field surveys designed to estimate plant diversity are usually limited in their spatiotemporal resolutions. Using Sentinel-1 (S-1) and Sentinel-2 (S-2) data at high spatiotemporal scales, combined with and referenced to botanical field surveys, may be the best choice to provide accurate plant diversity distribution information over a large area. In this paper, we predicted and mapped plant diversity in a subtropical forest using 24 months of freely and openly available S-1 and S-2 images (10 m × 10 m) data over a large study area (15,290 km2). A total of 448 quadrats (10 m × 10 m) of forestry field surveys were captured in a subtropical evergreen-deciduous broad-leaved mixed forest to validate a machine learning algorithm. The objective was to link the fine Sentinel spectral and radar data to several ground-truthing plant diversity indices in the forests. The results showed that: (1) The Simpson and Shannon-Wiener diversity indices were the best predicted indices using random forest regression, with ȓ2 of around 0.65; (2) The use of S-1 radar data can enhance the accuracy of the predicted heterogeneity indices in the forests by approximately 0.2; (3) As for the mapping of Simpson and Shannon-Wiener, the overall accuracy was 67.4% and 64.2% respectively, while the texture diversity’s overall accuracy was merely 56.8%; (4) From the evaluation and prediction map information, the Simpson, Shannon-Wiener and texture diversity values (and its confidence interval values) indicate spatial heterogeneity in pixel level. The large-area forest plant diversity indices maps add spatially explicit information to the ground-truthing data. Based on the results, we conclude that using the time-series of S-1 and S-2 radar and spectral characteristics, when coupled with limited ground-truthing data, can provide reasonable assessments of plant spatial heterogeneity and diversity across wide areas. It could also help promote forest ecosystem and resource conservation activities in the forestry sector.
AbstractList Plant diversity is an important parameter in maintaining forest ecosystem services, functions and stability. Timely and accurate monitoring and evaluation of large-area wall-to-wall maps on plant diversity and its spatial heterogeneity are crucial for the conservation and management of forest resources. However, traditional botanical field surveys designed to estimate plant diversity are usually limited in their spatiotemporal resolutions. Using Sentinel-1 (S-1) and Sentinel-2 (S-2) data at high spatiotemporal scales, combined with and referenced to botanical field surveys, may be the best choice to provide accurate plant diversity distribution information over a large area. In this paper, we predicted and mapped plant diversity in a subtropical forest using 24 months of freely and openly available S-1 and S-2 images (10 m × 10 m) data over a large study area (15,290 km2). A total of 448 quadrats (10 m × 10 m) of forestry field surveys were captured in a subtropical evergreen-deciduous broad-leaved mixed forest to validate a machine learning algorithm. The objective was to link the fine Sentinel spectral and radar data to several ground-truthing plant diversity indices in the forests. The results showed that: (1) The Simpson and Shannon-Wiener diversity indices were the best predicted indices using random forest regression, with ȓ2 of around 0.65; (2) The use of S-1 radar data can enhance the accuracy of the predicted heterogeneity indices in the forests by approximately 0.2; (3) As for the mapping of Simpson and Shannon-Wiener, the overall accuracy was 67.4% and 64.2% respectively, while the texture diversity’s overall accuracy was merely 56.8%; (4) From the evaluation and prediction map information, the Simpson, Shannon-Wiener and texture diversity values (and its confidence interval values) indicate spatial heterogeneity in pixel level. The large-area forest plant diversity indices maps add spatially explicit information to the ground-truthing data. Based on the results, we conclude that using the time-series of S-1 and S-2 radar and spectral characteristics, when coupled with limited ground-truthing data, can provide reasonable assessments of plant spatial heterogeneity and diversity across wide areas. It could also help promote forest ecosystem and resource conservation activities in the forestry sector.
Plant diversity is an important parameter in maintaining forest ecosystem services, functions and stability. Timely and accurate monitoring and evaluation of large-area wall-to-wall maps on plant diversity and its spatial heterogeneity are crucial for the conservation and management of forest resources. However, traditional botanical field surveys designed to estimate plant diversity are usually limited in their spatiotemporal resolutions. Using Sentinel-1 (S-1) and Sentinel-2 (S-2) data at high spatiotemporal scales, combined with and referenced to botanical field surveys, may be the best choice to provide accurate plant diversity distribution information over a large area. In this paper, we predicted and mapped plant diversity in a subtropical forest using 24 months of freely and openly available S-1 and S-2 images (10 m × 10 m) data over a large study area (15,290 km²). A total of 448 quadrats (10 m × 10 m) of forestry field surveys were captured in a subtropical evergreen-deciduous broad-leaved mixed forest to validate a machine learning algorithm. The objective was to link the fine Sentinel spectral and radar data to several ground-truthing plant diversity indices in the forests. The results showed that: (1) The Simpson and Shannon-Wiener diversity indices were the best predicted indices using random forest regression, with ȓ² of around 0.65; (2) The use of S-1 radar data can enhance the accuracy of the predicted heterogeneity indices in the forests by approximately 0.2; (3) As for the mapping of Simpson and Shannon-Wiener, the overall accuracy was 67.4% and 64.2% respectively, while the texture diversity’s overall accuracy was merely 56.8%; (4) From the evaluation and prediction map information, the Simpson, Shannon-Wiener and texture diversity values (and its confidence interval values) indicate spatial heterogeneity in pixel level. The large-area forest plant diversity indices maps add spatially explicit information to the ground-truthing data. Based on the results, we conclude that using the time-series of S-1 and S-2 radar and spectral characteristics, when coupled with limited ground-truthing data, can provide reasonable assessments of plant spatial heterogeneity and diversity across wide areas. It could also help promote forest ecosystem and resource conservation activities in the forestry sector.
Author Wang, Lihui
Huang, Jinliang
Lu, Lijie
Du, Yun
Ling, Feng
Li, Yang
Yang, Qichi
Author_xml – sequence: 1
  givenname: Qichi
  orcidid: 0000-0003-2292-619X
  surname: Yang
  fullname: Yang, Qichi
– sequence: 2
  givenname: Lihui
  surname: Wang
  fullname: Wang, Lihui
– sequence: 3
  givenname: Jinliang
  surname: Huang
  fullname: Huang, Jinliang
– sequence: 4
  givenname: Lijie
  surname: Lu
  fullname: Lu, Lijie
– sequence: 5
  givenname: Yang
  surname: Li
  fullname: Li, Yang
– sequence: 6
  givenname: Yun
  surname: Du
  fullname: Du, Yun
– sequence: 7
  givenname: Feng
  orcidid: 0000-0002-0685-4897
  surname: Ling
  fullname: Ling, Feng
BookMark eNptkd9qFDEUxgepYK298QkC3ogwNn9nJpe63erCthVar8OZ_ClZZpMxyRR650P4hD6J0VWU4rk5H-F3Ps6X87w5CjHYpnlJ8FvGJD5LmXDMMJf0SXNMcU9bTiU9-kc_a05z3uFajBGJ-XETL2GefbhDnyYIBZ37e5uyLw_oPWRrUAxoFfejD1XfrK9uN1frbUvOKDqHAt-_frue55jKEnzxNiMXE7pZxpLi7DVM6DIuoYAPccnoIiabS37RPHUwZXv6u580ny_Wt6uP7fb6w2b1bttqRnlpoTc9NrbuTZ12znRMYDO4caRaGOkYA-I6GJxgbqAj70fZCzH2DIBoIQhjJ83m4Gsi7NSc_B7Sg4rg1a-HmO4UpOL1ZJVkjEuwxgldBSMDx9wwPHZyFKY3Y_V6ffCaU_yy1BRq77O2U_0xW6Mp2vFh6AiRoqKvHqG7uKRQk1aK9gPtZNdXCh8onWLOyTqlfYHiYygJ_KQIVj8Pqv4etI68eTTyJ9N_4B98_6J-
CitedBy_id crossref_primary_10_1080_15481603_2023_2233756
crossref_primary_10_1016_j_isprsjprs_2024_07_029
crossref_primary_10_1016_j_jnc_2024_126823
crossref_primary_10_1016_j_scitotenv_2023_166995
crossref_primary_10_3390_f15020318
crossref_primary_10_1016_j_ecolind_2022_109160
crossref_primary_10_3389_fpls_2025_1582910
crossref_primary_10_3390_rs14092038
crossref_primary_10_3390_rs15040979
Cites_doi 10.1016/j.rse.2021.112822
10.1023/A:1010933404324
10.1016/j.rse.2016.08.013
10.1111/2041-210X.12219
10.1109/JSTARS.2015.2503773
10.1016/j.isprsjprs.2021.08.017
10.1016/S0034-4257(96)00112-5
10.1016/S0169-5347(01)02283-2
10.1016/j.rse.2007.03.018
10.1016/j.jhydrol.2020.125318
10.1016/j.rse.2015.09.016
10.1016/j.rse.2021.112456
10.1016/j.pld.2021.03.003
10.1007/s10661-017-6295-6
10.1016/j.rse.2018.10.037
10.3390/rs10081266
10.1016/j.ecolind.2009.07.012
10.1109/36.964973
10.1080/13658816.2017.1346255
10.1016/j.isprsjprs.2020.10.018
10.1016/j.isprsjprs.2020.01.001
10.1016/j.rse.2017.12.014
10.1016/j.dib.2021.107408
10.1002/rse2.139
10.3390/rs4092818
10.1016/j.rse.2019.111496
10.3390/rs11040414
10.1016/j.rse.2016.06.016
10.1007/s13595-014-0446-5
10.1016/j.rse.2018.11.007
10.1111/geb.12161
10.1016/j.rse.2018.07.006
10.1002/rse2.9
10.1016/j.rse.2019.01.018
10.3390/rs9100993
10.1016/j.rse.2008.07.007
10.1016/j.ecolind.2015.12.026
10.1016/j.rse.2021.112743
10.1038/nclimate2919
10.1016/j.isprsjprs.2017.07.007
10.1016/j.rse.2019.111262
10.1016/j.isprsjprs.2021.06.005
10.1016/j.isprsjprs.2020.11.023
10.1016/j.isprsjprs.2019.03.016
10.1016/j.rse.2019.111218
10.3390/rs10010055
10.1016/j.rse.2020.111670
10.1002/rse2.137
10.1002/9781444315813
10.3390/rs70302692
10.3732/ajb.1700061
10.1126/science.1256014
10.3390/rs71013895
10.1016/j.rse.2018.05.014
10.3390/rs8121029
10.1016/j.ecoinf.2019.04.001
10.1109/IGARSS.2019.8899782
10.1016/j.ecoinf.2010.06.001
10.1016/j.isprsjprs.2021.02.018
10.1016/j.rse.2012.02.013
10.1016/j.rse.2012.01.019
10.1016/j.rse.2018.09.019
10.1016/j.rse.2019.111536
10.3390/rs12081276
10.1080/17445647.2017.1372316
10.1016/j.rse.2021.112505
10.3390/rs9040309
10.1016/j.rse.2003.11.008
10.1016/j.conbuildmat.2018.09.017
10.1016/j.ecoser.2014.05.006
10.1016/j.rse.2015.12.019
10.1016/j.rse.2005.12.011
10.3390/rs70302668
10.3390/rs11070743
10.1016/j.ecoinf.2014.08.006
10.3390/rs10111794
10.1016/0034-4257(79)90013-0
10.1002/rse2.173
10.1016/j.rse.2019.111626
10.1016/j.isprsjprs.2017.10.008
10.1016/j.isprsjprs.2017.04.016
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14030492
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Forestry
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_93349aedf5c349318404d30b69b5d7db
10_3390_rs14030492
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c324t-a7d70de0722fcffd6350d8fbb2c5d9f33a1f6a8f53f82b47b9755b73aa1c55133
IEDL.DBID M7S
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760311700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 19:04:36 EDT 2025
Wed Oct 01 14:18:26 EDT 2025
Fri Jul 25 12:02:26 EDT 2025
Sat Nov 29 07:17:09 EST 2025
Tue Nov 18 21:49:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-a7d70de0722fcffd6350d8fbb2c5d9f33a1f6a8f53f82b47b9755b73aa1c55133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2292-619X
0000-0002-0685-4897
OpenAccessLink https://www.proquest.com/docview/2627826967?pq-origsite=%requestingapplication%
PQID 2627826967
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_93349aedf5c349318404d30b69b5d7db
proquest_miscellaneous_2648861195
proquest_journals_2627826967
crossref_citationtrail_10_3390_rs14030492
crossref_primary_10_3390_rs14030492
PublicationCentury 2000
PublicationDate 20220120
PublicationDateYYYYMMDD 2022-01-20
PublicationDate_xml – month: 01
  year: 2022
  text: 20220120
  day: 20
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Warren (ref_22) 2014; 24
Smith (ref_90) 2020; 6
Feilhauer (ref_88) 2013; 21
Rocchini (ref_37) 2007; 111
Mura (ref_46) 2018; 66
Breiman (ref_64) 2001; 45
Wallis (ref_11) 2016; 174
Hauser (ref_34) 2021; 262
ref_54
Gholizadeh (ref_86) 2019; 221
ref_52
Zeng (ref_68) 2008; 112
Potter (ref_74) 2012; 121
You (ref_44) 2020; 161
Bhattarai (ref_61) 2021; 172
Hamrouni (ref_9) 2021; 171
Hagolle (ref_69) 2015; 7
Belmonte (ref_26) 2019; 6
Reiche (ref_57) 2016; 6
Dash (ref_29) 2017; 131
Randin (ref_16) 2020; 239
Turner (ref_25) 2014; 346
Mercier (ref_59) 2021; 38
Simonson (ref_28) 2014; 5
Hemmerling (ref_53) 2021; 267
Pinaud (ref_65) 2014; 23
Erinjery (ref_62) 2018; 216
Pohjankukka (ref_87) 2017; 31
Cho (ref_76) 2006; 101
Defourny (ref_43) 2019; 221
Mura (ref_21) 2015; 170
Leutner (ref_31) 2012; 4
ref_66
Li (ref_18) 2020; 591
Keenan (ref_10) 2015; 72
Guerschman (ref_35) 2020; 240
ref_63
Oldeland (ref_81) 2010; 10
Matton (ref_71) 1979; 8
Rocchini (ref_20) 2010; 5
Cabido (ref_17) 2001; 16
Tang (ref_13) 2019; 231
Lopes (ref_58) 2020; 6
ref_79
Rocchini (ref_23) 2015; 2
ref_78
Zhao (ref_3) 2018; 213
Madonsela (ref_14) 2017; 133
Arekhi (ref_15) 2017; 189
Gamon (ref_19) 2017; 104
Voormansik (ref_83) 2016; 9
ref_30
Clerici (ref_82) 2017; 13
Heiskanen (ref_1) 2016; 64
Zhao (ref_56) 2022; 269
ref_39
Shoko (ref_84) 2017; 129
Tian (ref_50) 2021; 260
Tuanmu (ref_77) 2012; 121
Rapinel (ref_45) 2019; 223
Harrison (ref_4) 2014; 9
Liu (ref_32) 2019; 151
Zhang (ref_12) 2021; 25
Dandois (ref_27) 2015; 7
Adrian (ref_33) 2021; 175
Quegan (ref_70) 2001; 39
Sulik (ref_75) 2016; 184
Torresani (ref_5) 2019; 52
Ceballos (ref_24) 2015; 7
Vihervaara (ref_7) 2017; 10
Waser (ref_49) 2021; 180
Gong (ref_80) 2018; 189
ref_47
ref_89
ref_42
Schulz (ref_60) 2021; 178
Xiao (ref_73) 2004; 89
ref_41
ref_85
ref_40
Wang (ref_38) 2019; 231
Huete (ref_72) 1997; 59
ref_2
Ge (ref_36) 2018; 218
Forkuor (ref_51) 2020; 236
Gholizadeh (ref_6) 2018; 206
Fassnacht (ref_55) 2016; 186
ref_48
ref_8
Yang (ref_67) 2019; 37
References_xml – volume: 269
  start-page: 112822
  year: 2022
  ident: ref_56
  article-title: Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112822
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_64
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_78
– volume: 186
  start-page: 64
  year: 2016
  ident: ref_55
  article-title: Review of studies on tree species classification from remotely sensed data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.013
– volume: 5
  start-page: 719
  year: 2014
  ident: ref_28
  article-title: Applications of airborne lidar for the assessment of animal species diversity
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12219
– volume: 9
  start-page: 1382
  year: 2016
  ident: ref_83
  article-title: Observations of Cutting Practices in Agricultural Grasslands Using Polarimetric SAR
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2503773
– volume: 180
  start-page: 209
  year: 2021
  ident: ref_49
  article-title: Mapping dominant leaf type based on combined Sentinel-1/-2 data—Challenges for mountainous countries
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.08.017
– volume: 59
  start-page: 440
  year: 1997
  ident: ref_72
  article-title: A Comparison of Vegetation Indices over a Global Set of TM Images for EOS-MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00112-5
– volume: 16
  start-page: 646
  year: 2001
  ident: ref_17
  article-title: Vive la différence: Plant functional diversity matters to ecosystem processes
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/S0169-5347(01)02283-2
– volume: 111
  start-page: 423
  year: 2007
  ident: ref_37
  article-title: Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.03.018
– volume: 591
  start-page: 125318
  year: 2020
  ident: ref_18
  article-title: Soil, biochar, and nitrogen loss to runoff from loess soil amended with biochar under simulated rainfall
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125318
– volume: 170
  start-page: 133
  year: 2015
  ident: ref_21
  article-title: Estimating and mapping forest structural diversity using airborne laser scanning data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.016
– volume: 260
  start-page: 112456
  year: 2021
  ident: ref_50
  article-title: Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112456
– ident: ref_63
  doi: 10.1016/j.pld.2021.03.003
– volume: 189
  start-page: 586
  year: 2017
  ident: ref_15
  article-title: Can tree species diversity be assessed with Landsat data in a temperate forest?
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-017-6295-6
– volume: 221
  start-page: 38
  year: 2019
  ident: ref_86
  article-title: Detecting prairie biodiversity with airborne remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.10.037
– ident: ref_40
  doi: 10.3390/rs10081266
– volume: 10
  start-page: 390
  year: 2010
  ident: ref_81
  article-title: Does using species abundance data improve estimates of species diversity from remotely sensed spectral heterogeneity?
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2009.07.012
– volume: 21
  start-page: 218
  year: 2013
  ident: ref_88
  article-title: Assessing floristic composition with multispectral sensors—A comparison based on monotemporal and multiseasonal field spectra
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 39
  start-page: 2373
  year: 2001
  ident: ref_70
  article-title: Filtering of Multichannel SAR Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.964973
– ident: ref_42
– volume: 31
  start-page: 2001
  year: 2017
  ident: ref_87
  article-title: Estimating the prediction performance of spatial models via spatial k-fold cross validation
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2017.1346255
– volume: 10
  start-page: 43
  year: 2017
  ident: ref_7
  article-title: How Essential Biodiversity Variables and remote sensing can help national biodiversity monitoring
  publication-title: Glob. Ecol. Conserv.
– volume: 171
  start-page: 76
  year: 2021
  ident: ref_9
  article-title: From local to global: A transfer learning-based approach for mapping poplar plantations at national scale using Sentinel-2
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.10.018
– volume: 161
  start-page: 109
  year: 2020
  ident: ref_44
  article-title: Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.01.001
– volume: 206
  start-page: 240
  year: 2018
  ident: ref_6
  article-title: Remote sensing of biodiversity: Soil correction and data dimension reduction methods improve assessment of α-diversity (species richness) in prairie ecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.12.014
– volume: 38
  start-page: 107408
  year: 2021
  ident: ref_59
  article-title: Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data
  publication-title: Data Brief.
  doi: 10.1016/j.dib.2021.107408
– volume: 6
  start-page: 316
  year: 2020
  ident: ref_58
  article-title: Combining optical and radar satellite image time series to map natural vegetation: Savannas as an example
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.139
– volume: 4
  start-page: 2818
  year: 2012
  ident: ref_31
  article-title: Modelling Forest α-Diversity and Floristic Composition—On the Added Value of LiDAR plus Hyperspectral Remote Sensing
  publication-title: Remote Sens.
  doi: 10.3390/rs4092818
– volume: 236
  start-page: 111496
  year: 2020
  ident: ref_51
  article-title: Above-ground biomass mapping in West African dryland forest using Sentinel-1 and 2 datasets—A case study
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111496
– ident: ref_52
  doi: 10.3390/rs11040414
– volume: 184
  start-page: 161
  year: 2016
  ident: ref_75
  article-title: Spectral considerations for modeling yield of canola
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.06.016
– volume: 37
  start-page: 464
  year: 2019
  ident: ref_67
  article-title: Spatial scale analysis of the species diversity and distribution of rare and endangered plants in northwest Hubei, China
  publication-title: Plant Sci. J.
– volume: 72
  start-page: 145
  year: 2015
  ident: ref_10
  article-title: Climate change impacts and adaptation in forest management: A review
  publication-title: Ann. For. Sci.
  doi: 10.1007/s13595-014-0446-5
– volume: 221
  start-page: 551
  year: 2019
  ident: ref_43
  article-title: Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.007
– volume: 23
  start-page: 811
  year: 2014
  ident: ref_65
  article-title: Spatial leave-one-out cross-validation for variable selection in the presence of spatial autocorrelation
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12161
– volume: 216
  start-page: 345
  year: 2018
  ident: ref_62
  article-title: Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.07.006
– volume: 2
  start-page: 25
  year: 2015
  ident: ref_23
  article-title: Satellite remote sensing to monitor species diversity: Potential and pitfalls
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.9
– ident: ref_66
– volume: 223
  start-page: 115
  year: 2019
  ident: ref_45
  article-title: Evaluation of Sentinel-2 time-series for mapping floodplain grassland plant communities
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.018
– ident: ref_89
  doi: 10.3390/rs9100993
– volume: 112
  start-page: 4261
  year: 2008
  ident: ref_68
  article-title: Scaling-based forest structural change detection using an inverted geometric-optical model in the Three Gorges region of China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.07.007
– volume: 64
  start-page: 49
  year: 2016
  ident: ref_1
  article-title: Mapping tree species diversity of a tropical montane forest by unsupervised clustering of airborne imaging spectroscopy data
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.12.026
– volume: 267
  start-page: 112743
  year: 2021
  ident: ref_53
  article-title: Mapping temperate forest tree species using dense Sentinel-2 time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112743
– volume: 6
  start-page: 120
  year: 2016
  ident: ref_57
  article-title: Combining satellite data for better tropical forest monitoring
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2919
– volume: 131
  start-page: 1
  year: 2017
  ident: ref_29
  article-title: Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.07.007
– volume: 231
  start-page: 111262
  year: 2019
  ident: ref_13
  article-title: Characterizing global forest canopy cover distribution using spaceborne lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111262
– volume: 178
  start-page: 97
  year: 2021
  ident: ref_60
  article-title: Land use mapping using Sentinel-1 and Sentinel-2 time series in a heterogeneous landscape in Niger, Sahel
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.06.005
– volume: 172
  start-page: 28
  year: 2021
  ident: ref_61
  article-title: Spruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.11.023
– volume: 151
  start-page: 277
  year: 2019
  ident: ref_32
  article-title: Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.03.016
– volume: 231
  start-page: 111218
  year: 2019
  ident: ref_38
  article-title: Remote sensing of terrestrial plant biodiversity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111218
– ident: ref_54
  doi: 10.3390/rs10010055
– volume: 240
  start-page: 111670
  year: 2020
  ident: ref_35
  article-title: Vegetation cover dependence on accumulated antecedent precipitation in Australia: Relationships with photosynthetic and non-photosynthetic vegetation fractions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111670
– volume: 6
  start-page: 181
  year: 2019
  ident: ref_26
  article-title: UAV-derived estimates of forest structure to inform ponderosa pine forest restoration
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.137
– ident: ref_85
  doi: 10.1002/9781444315813
– volume: 7
  start-page: 2692
  year: 2015
  ident: ref_24
  article-title: Comparison of Airborne LiDAR and Satellite Hyperspectral Remote Sensing to Estimate Vascular Plant Richness in Deciduous Mediterranean Forests of Central Chile
  publication-title: Remote Sens.
  doi: 10.3390/rs70302692
– volume: 104
  start-page: 966
  year: 2017
  ident: ref_19
  article-title: Harnessing plant spectra to integrate the biodiversity sciences across biological and spatial scales
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.1700061
– volume: 25
  start-page: e01418
  year: 2021
  ident: ref_12
  article-title: How evergreen and deciduous trees coexist during secondary forest succession: Insights into forest restoration mechanisms in Chinese subtropical forest
  publication-title: Glob. Ecol. Conserv.
– volume: 346
  start-page: 301
  year: 2014
  ident: ref_25
  article-title: Sensing biodiversity
  publication-title: Science
  doi: 10.1126/science.1256014
– volume: 7
  start-page: 13895
  year: 2015
  ident: ref_27
  article-title: Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure
  publication-title: Remote Sens.
  doi: 10.3390/rs71013895
– volume: 213
  start-page: 104
  year: 2018
  ident: ref_3
  article-title: Forest species diversity mapping using airborne LiDAR and hyperspectral data in a subtropical forest in China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.05.014
– ident: ref_2
  doi: 10.3390/rs8121029
– volume: 52
  start-page: 26
  year: 2019
  ident: ref_5
  article-title: Estimating tree species diversity from space in an alpine conifer forest: The Rao’s Q diversity index meets the spectral variation hypothesis
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2019.04.001
– ident: ref_39
  doi: 10.1109/IGARSS.2019.8899782
– volume: 5
  start-page: 318
  year: 2010
  ident: ref_20
  article-title: Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2010.06.001
– volume: 175
  start-page: 215
  year: 2021
  ident: ref_33
  article-title: Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.02.018
– ident: ref_79
– volume: 121
  start-page: 488
  year: 2012
  ident: ref_77
  article-title: Relationship between floristic similarity and vegetated land surface phenology: Implications for the synoptic monitoring of species diversity at broad geographic regions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.02.013
– volume: 121
  start-page: 61
  year: 2012
  ident: ref_74
  article-title: Analysis of sapling density regeneration in Yellowstone National Park with hyperspectral remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.01.019
– volume: 218
  start-page: 162
  year: 2018
  ident: ref_36
  article-title: Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.019
– ident: ref_8
  doi: 10.1016/j.rse.2019.111536
– ident: ref_47
  doi: 10.3390/rs12081276
– volume: 13
  start-page: 718
  year: 2017
  ident: ref_82
  article-title: Fusion of Sentinel-1A and Sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia
  publication-title: J. Maps
  doi: 10.1080/17445647.2017.1372316
– volume: 262
  start-page: 112505
  year: 2021
  ident: ref_34
  article-title: Towards scalable estimation of plant functional diversity from Sentinel-2: In-situ validation in a heterogeneous (semi-)natural landscape
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112505
– ident: ref_41
  doi: 10.3390/rs9040309
– volume: 89
  start-page: 519
  year: 2004
  ident: ref_73
  article-title: Satellite-based modeling of gross primary production in an evergreen needleleaf forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.11.008
– volume: 189
  start-page: 890
  year: 2018
  ident: ref_80
  article-title: Use of random forests regression for predicting IRI of asphalt pavements
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.09.017
– volume: 9
  start-page: 191
  year: 2014
  ident: ref_4
  article-title: Linkages between biodiversity attributes and ecosystem services: A systematic review
  publication-title: Ecosyst. Serv.
  doi: 10.1016/j.ecoser.2014.05.006
– volume: 174
  start-page: 223
  year: 2016
  ident: ref_11
  article-title: Contrasting performance of Lidar and optical texture models in predicting avian diversity in a tropical mountain forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.019
– volume: 101
  start-page: 181
  year: 2006
  ident: ref_76
  article-title: A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.12.011
– volume: 7
  start-page: 2668
  year: 2015
  ident: ref_69
  article-title: A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images
  publication-title: Remote Sens.
  doi: 10.3390/rs70302668
– ident: ref_30
  doi: 10.3390/rs11070743
– volume: 24
  start-page: 160
  year: 2014
  ident: ref_22
  article-title: The relationship between the spectral diversity of satellite imagery, habitat heterogeneity, and plant species richness
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2014.08.006
– ident: ref_48
  doi: 10.3390/rs10111794
– volume: 8
  start-page: 127
  year: 1979
  ident: ref_71
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90013-0
– volume: 6
  start-page: 286
  year: 2020
  ident: ref_90
  article-title: Do acoustically detectable species reflect overall diversity? A case study from Australia’s arid zone
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.173
– volume: 66
  start-page: 126
  year: 2018
  ident: ref_46
  article-title: Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 239
  start-page: 111626
  year: 2020
  ident: ref_16
  article-title: Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111626
– volume: 133
  start-page: 116
  year: 2017
  ident: ref_14
  article-title: Remote sensing of species diversity using Landsat 8 spectral variables
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.10.008
– volume: 129
  start-page: 32
  year: 2017
  ident: ref_84
  article-title: Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.04.016
SSID ssj0000331904
Score 2.3655517
Snippet Plant diversity is an important parameter in maintaining forest ecosystem services, functions and stability. Timely and accurate monitoring and evaluation of...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 492
SubjectTerms Algorithms
confidence interval
Confidence intervals
Coniferous forests
Conservation
Datasets
Deciduous forests
Diversity indices
Ecosystem services
Evaluation
Flowers & plants
Forest ecosystems
Forest management
Forest resources
Forestry
Heterogeneity
image analysis
Learning algorithms
Machine learning
Mapping
Mixed forests
mountains
Plant diversity
Polls & surveys
prediction
Radar
Radar data
Rainforests
random forest
Remote sensing
Resource conservation
satellite imagery time-series
Satellites
sentinel-1 and -2
Spatial heterogeneity
spatial variation
species diversity
Stability analysis
Statistical analysis
subtropical evergreen-deciduous broad-leaved mixed forest
Taxonomy
Terrestrial ecosystems
Texture
time series analysis
Topography
Tropical forests
Vegetation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9tAEF1KKLSXkKYtVeKWDe2lB2FpV9Kujk1jk4CtFuqCb2I_G0OQjSUHcsuPyC_ML-mMJLsuLfTS2yLtYTUzO_uGHb1HyAcFTvYqiUOljQ3xoiiUXPtQcwDnznMhfevpiSgKOZ_nX_ekvrAnrKMH7gw3hII7yZWzPjUw4FiQJJZHOst1aoXVmH0jke8VU20O5hBaUdLxkXKo64frGpnpAA-z306glqj_jzzcHi7jI3LYo0L6qVvNC_LEVcfkWS9Qfn33kiynCokUflAUGWroxbabgp7DKWTpsqKwsaHIhfG3UTG7KkaTMB4yeqEa9Xj_8GWFMHtTtfSpFHAqhYTRrJcrdBGdol6EWiBZK0WpzrqpX5Hv49Hs82XYayWEBiBREyphRWRdJBjzxnsLOCKy0mvNTGpzz7mKfaakT7mXTCdC5yJNteBKxabVeHlNDqpl5d4QmgqfaeWkR-o4lznpksQbiZUj4kkWkI9b-5WmJxJHPYubEgoKtHX5y9YBeb-bu-roM_466xzdsJuBlNftAwiEsg-E8l-BEJDB1ollvw_rkmUMIFCWZyIgZ7vXsIPwWkRVDgxbYo8ffF2cpyf_Yx2n5DnDXySiGDLQgBw06417S56a22ZRr9-1YfoTIPrtlg
  priority: 102
  providerName: Directory of Open Access Journals
Title Mapping Plant Diversity Based on Combined SENTINEL-1/2 Data—Opportunities for Subtropical Mountainous Forests
URI https://www.proquest.com/docview/2627826967
https://www.proquest.com/docview/2648861195
https://doaj.org/article/93349aedf5c349318404d30b69b5d7db
Volume 14
WOSCitedRecordID wos000760311700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgRcCGRylioIyMYMMimsRO4mSFGJqKSp0Q0SIVNpGfpRJKhiRFYoP4CL6QL-FeT2YqBGLDJrJiK69jX9977ZxDyDMJIDsZR4FU2gS4UBRkXLlAcXDOreMicx7pI1GW2elpXo0Jt37cVrm2id5Qm1ZjjnzGUgaTWZqn4sXyc4CqUbi6OkpoXCXbyJIQ-a17x5scS8ihg4XxipWUQ3Q_63rkpwOvmP02D3m6_j-ssZ9iDm7_78PdIbdG55K-XPWGu-SKbXbIdVTfREm3HXJjlDz_-PUeaRcSqRnOKMoWDXR_vT-DzmFeM7RtKJgKCJuhfFyUJ4dlcRREM0b35SB_fv_xZomO-0XjCVkpeL4UTNDQtUsEnS5QgUKeI_0rXd2-3yXvDoqTV6-DUX0h0OBkDYEURoTGhoIxp50z4JmEJnNKMZ2Y3HEuI5fKzCXcZUzFQuUiSZTgUkbaq8bcJ1tN29gHhCbCpUrazCEZnU1tZuPY6QxjUfRQ2YQ8X2NR65GaHBUyPtUQoiBu9SVuE_J003a5IuT4a6s5QrppgSTa_kTbndXjmKxzzuNcWuMSDQWOsW5seKjSXCVGGDUhe2u063Fk9_Ul1BPyZFMNYxIXWmRj4cPWuGsQ3i7Kk4f_vsQjcpPh7xRhBNZqj2wN3YV9TK7pL8N5303J9rwoq7dTnyeY-q6Nx28FHKvkA9RXh4vq_S-dTwYI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFNFe-CggAgUWAQcOVuxd22sfEKIkVaMmIRJBKiez690tlSo7JC6oN34Ev4MfxS9hxrFTIRC3HrhZ9mote5_fzHh33wN4pnCQnQoDT-nceDRR5CVCO08LTM6tEzJx9UiP5GSSHB2l0w340e6FoWWVLSfWRG3KnP6R93jMMZjFaSxfzT975BpFs6uthcYKFof2_CuWbMuXwz6O73PO9wezNwde4yrg5Zg8VJ6SRvrG-pJzlztnMOL6JnFa8zwyqRNCBS5WiYuES7gOpU5lFGkplAry2g0F-70CmyGBvQOb0-F4-mH9V8cXCGk_XOmgCpH6vcWSFPEwD-e_Rb7aIOAP_q-D2v6N_-113ITrTfrMXq_wfgs2bLED18hflEzrdmCrMXX_dH4byrEi8YljRsZMFeu3K1DYHkZuw8qCIRlqzLINezeYzIaTwcgLepz1VaV-fvv-dk6lyVlRS84yzO0Zkmy1KOcEazYmjw11QgK3bHX75R14fymPfhc6RVnYe8Ai6WKtbOJIbs_GNrFh6PKEqm3KwXkXXrRjn-WN-Dp5gJxmWIQRTrILnHTh6brtfCU58tdWewShdQuSCa9PlIvjrGGdLBUiTJU1LsrxQFA1Hxrh6zjVkZFGd2G3RVfWcNcyu4BWF56sLyPr0FSSKiy-2IzWReLTBWl0_99dPIatg9l4lI2Gk8MHsM1p84gfIDfvQqdanNmHcDX_Up0sF4-aT4nBx8uG6y8qqV9W
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBRU2PAqIgQJGwIJFNImdxMkCIcrMiFGnYSSKVLEJdmyXSigZZlJQd3wEX8Pn8CXcm8dUCMSuC3ZRYiWKfXwf9vU5AE8UDrJTYeApXRiPNoq8RGjnaYHBuXVCJq4Z6ZnMsuTwMJ1vwI_-LAyVVfY2sTHUpipojXzIY47OLE5jOXRdWcR8NHmx-OyRghTttPZyGi1E9uzpV0zfVs-nIxzrp5xPxgevXnudwoBXYCBRe0oa6RvrS85d4ZxB7-ubxGnNi8ikTggVuFglLhIu4TqUOpVRpKVQKigaZRR87wW4KDHHpHLCefR-vb7jCwS3H7aMqEKk_nC5Im48jMj5bz6wkQr4wxM07m1y7X_umOtwtQuq2ct2FtyADVtuwxapjpKU3TZc7qTeP57ehGpfESXFESO5ppqN-roUtov-3LCqZGgiNcbehr0dZwfTbDzzgiFnI1Wrn9--v1lQwnJSNkS0DCN-hqa3XlYLAjvbJ-UNdUy0t6z9_OoWvDuXX78Nm2VV2jvAIulirWziiITPxjaxYeiKhHJwisz5AJ71OMiLjpKdlEE-5ZiaEWbyM8wM4PG67aIlIvlrq12C07oFkYc3N6rlUd7ZojwVIkyVNS4q8EJQjh8a4es41ZGRRg9gp0da3lm0VX4GswE8Wj9GW0QbTKq02LE5VUvi3wVpdPffr3gIW4jRfDbN9u7BFU4nSvwADfYObNbLE3sfLhVf6uPV8kEzpxh8OG-s_gJO7ma5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Plant+Diversity+Based+on+Combined+SENTINEL-1%2F2+Data%E2%80%94Opportunities+for+Subtropical+Mountainous+Forests&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Yang%2C+Qichi&rft.au=Wang%2C+Lihui&rft.au=Huang%2C+Jinliang&rft.au=Lu%2C+Lijie&rft.date=2022-01-20&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=3&rft.spage=492&rft_id=info:doi/10.3390%2Frs14030492&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon