Mapping Plant Diversity Based on Combined SENTINEL-1/2 Data—Opportunities for Subtropical Mountainous Forests
Plant diversity is an important parameter in maintaining forest ecosystem services, functions and stability. Timely and accurate monitoring and evaluation of large-area wall-to-wall maps on plant diversity and its spatial heterogeneity are crucial for the conservation and management of forest resour...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 14; číslo 3; s. 492 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
20.01.2022
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Plant diversity is an important parameter in maintaining forest ecosystem services, functions and stability. Timely and accurate monitoring and evaluation of large-area wall-to-wall maps on plant diversity and its spatial heterogeneity are crucial for the conservation and management of forest resources. However, traditional botanical field surveys designed to estimate plant diversity are usually limited in their spatiotemporal resolutions. Using Sentinel-1 (S-1) and Sentinel-2 (S-2) data at high spatiotemporal scales, combined with and referenced to botanical field surveys, may be the best choice to provide accurate plant diversity distribution information over a large area. In this paper, we predicted and mapped plant diversity in a subtropical forest using 24 months of freely and openly available S-1 and S-2 images (10 m × 10 m) data over a large study area (15,290 km2). A total of 448 quadrats (10 m × 10 m) of forestry field surveys were captured in a subtropical evergreen-deciduous broad-leaved mixed forest to validate a machine learning algorithm. The objective was to link the fine Sentinel spectral and radar data to several ground-truthing plant diversity indices in the forests. The results showed that: (1) The Simpson and Shannon-Wiener diversity indices were the best predicted indices using random forest regression, with ȓ2 of around 0.65; (2) The use of S-1 radar data can enhance the accuracy of the predicted heterogeneity indices in the forests by approximately 0.2; (3) As for the mapping of Simpson and Shannon-Wiener, the overall accuracy was 67.4% and 64.2% respectively, while the texture diversity’s overall accuracy was merely 56.8%; (4) From the evaluation and prediction map information, the Simpson, Shannon-Wiener and texture diversity values (and its confidence interval values) indicate spatial heterogeneity in pixel level. The large-area forest plant diversity indices maps add spatially explicit information to the ground-truthing data. Based on the results, we conclude that using the time-series of S-1 and S-2 radar and spectral characteristics, when coupled with limited ground-truthing data, can provide reasonable assessments of plant spatial heterogeneity and diversity across wide areas. It could also help promote forest ecosystem and resource conservation activities in the forestry sector. |
|---|---|
| AbstractList | Plant diversity is an important parameter in maintaining forest ecosystem services, functions and stability. Timely and accurate monitoring and evaluation of large-area wall-to-wall maps on plant diversity and its spatial heterogeneity are crucial for the conservation and management of forest resources. However, traditional botanical field surveys designed to estimate plant diversity are usually limited in their spatiotemporal resolutions. Using Sentinel-1 (S-1) and Sentinel-2 (S-2) data at high spatiotemporal scales, combined with and referenced to botanical field surveys, may be the best choice to provide accurate plant diversity distribution information over a large area. In this paper, we predicted and mapped plant diversity in a subtropical forest using 24 months of freely and openly available S-1 and S-2 images (10 m × 10 m) data over a large study area (15,290 km2). A total of 448 quadrats (10 m × 10 m) of forestry field surveys were captured in a subtropical evergreen-deciduous broad-leaved mixed forest to validate a machine learning algorithm. The objective was to link the fine Sentinel spectral and radar data to several ground-truthing plant diversity indices in the forests. The results showed that: (1) The Simpson and Shannon-Wiener diversity indices were the best predicted indices using random forest regression, with ȓ2 of around 0.65; (2) The use of S-1 radar data can enhance the accuracy of the predicted heterogeneity indices in the forests by approximately 0.2; (3) As for the mapping of Simpson and Shannon-Wiener, the overall accuracy was 67.4% and 64.2% respectively, while the texture diversity’s overall accuracy was merely 56.8%; (4) From the evaluation and prediction map information, the Simpson, Shannon-Wiener and texture diversity values (and its confidence interval values) indicate spatial heterogeneity in pixel level. The large-area forest plant diversity indices maps add spatially explicit information to the ground-truthing data. Based on the results, we conclude that using the time-series of S-1 and S-2 radar and spectral characteristics, when coupled with limited ground-truthing data, can provide reasonable assessments of plant spatial heterogeneity and diversity across wide areas. It could also help promote forest ecosystem and resource conservation activities in the forestry sector. Plant diversity is an important parameter in maintaining forest ecosystem services, functions and stability. Timely and accurate monitoring and evaluation of large-area wall-to-wall maps on plant diversity and its spatial heterogeneity are crucial for the conservation and management of forest resources. However, traditional botanical field surveys designed to estimate plant diversity are usually limited in their spatiotemporal resolutions. Using Sentinel-1 (S-1) and Sentinel-2 (S-2) data at high spatiotemporal scales, combined with and referenced to botanical field surveys, may be the best choice to provide accurate plant diversity distribution information over a large area. In this paper, we predicted and mapped plant diversity in a subtropical forest using 24 months of freely and openly available S-1 and S-2 images (10 m × 10 m) data over a large study area (15,290 km²). A total of 448 quadrats (10 m × 10 m) of forestry field surveys were captured in a subtropical evergreen-deciduous broad-leaved mixed forest to validate a machine learning algorithm. The objective was to link the fine Sentinel spectral and radar data to several ground-truthing plant diversity indices in the forests. The results showed that: (1) The Simpson and Shannon-Wiener diversity indices were the best predicted indices using random forest regression, with ȓ² of around 0.65; (2) The use of S-1 radar data can enhance the accuracy of the predicted heterogeneity indices in the forests by approximately 0.2; (3) As for the mapping of Simpson and Shannon-Wiener, the overall accuracy was 67.4% and 64.2% respectively, while the texture diversity’s overall accuracy was merely 56.8%; (4) From the evaluation and prediction map information, the Simpson, Shannon-Wiener and texture diversity values (and its confidence interval values) indicate spatial heterogeneity in pixel level. The large-area forest plant diversity indices maps add spatially explicit information to the ground-truthing data. Based on the results, we conclude that using the time-series of S-1 and S-2 radar and spectral characteristics, when coupled with limited ground-truthing data, can provide reasonable assessments of plant spatial heterogeneity and diversity across wide areas. It could also help promote forest ecosystem and resource conservation activities in the forestry sector. |
| Author | Wang, Lihui Huang, Jinliang Lu, Lijie Du, Yun Ling, Feng Li, Yang Yang, Qichi |
| Author_xml | – sequence: 1 givenname: Qichi orcidid: 0000-0003-2292-619X surname: Yang fullname: Yang, Qichi – sequence: 2 givenname: Lihui surname: Wang fullname: Wang, Lihui – sequence: 3 givenname: Jinliang surname: Huang fullname: Huang, Jinliang – sequence: 4 givenname: Lijie surname: Lu fullname: Lu, Lijie – sequence: 5 givenname: Yang surname: Li fullname: Li, Yang – sequence: 6 givenname: Yun surname: Du fullname: Du, Yun – sequence: 7 givenname: Feng orcidid: 0000-0002-0685-4897 surname: Ling fullname: Ling, Feng |
| BookMark | eNptkd9qFDEUxgepYK298QkC3ogwNn9nJpe63erCthVar8OZ_ClZZpMxyRR650P4hD6J0VWU4rk5H-F3Ps6X87w5CjHYpnlJ8FvGJD5LmXDMMJf0SXNMcU9bTiU9-kc_a05z3uFajBGJ-XETL2GefbhDnyYIBZ37e5uyLw_oPWRrUAxoFfejD1XfrK9uN1frbUvOKDqHAt-_frue55jKEnzxNiMXE7pZxpLi7DVM6DIuoYAPccnoIiabS37RPHUwZXv6u580ny_Wt6uP7fb6w2b1bttqRnlpoTc9NrbuTZ12znRMYDO4caRaGOkYA-I6GJxgbqAj70fZCzH2DIBoIQhjJ83m4Gsi7NSc_B7Sg4rg1a-HmO4UpOL1ZJVkjEuwxgldBSMDx9wwPHZyFKY3Y_V6ffCaU_yy1BRq77O2U_0xW6Mp2vFh6AiRoqKvHqG7uKRQk1aK9gPtZNdXCh8onWLOyTqlfYHiYygJ_KQIVj8Pqv4etI68eTTyJ9N_4B98_6J- |
| CitedBy_id | crossref_primary_10_1080_15481603_2023_2233756 crossref_primary_10_1016_j_isprsjprs_2024_07_029 crossref_primary_10_1016_j_jnc_2024_126823 crossref_primary_10_1016_j_scitotenv_2023_166995 crossref_primary_10_3390_f15020318 crossref_primary_10_1016_j_ecolind_2022_109160 crossref_primary_10_3389_fpls_2025_1582910 crossref_primary_10_3390_rs14092038 crossref_primary_10_3390_rs15040979 |
| Cites_doi | 10.1016/j.rse.2021.112822 10.1023/A:1010933404324 10.1016/j.rse.2016.08.013 10.1111/2041-210X.12219 10.1109/JSTARS.2015.2503773 10.1016/j.isprsjprs.2021.08.017 10.1016/S0034-4257(96)00112-5 10.1016/S0169-5347(01)02283-2 10.1016/j.rse.2007.03.018 10.1016/j.jhydrol.2020.125318 10.1016/j.rse.2015.09.016 10.1016/j.rse.2021.112456 10.1016/j.pld.2021.03.003 10.1007/s10661-017-6295-6 10.1016/j.rse.2018.10.037 10.3390/rs10081266 10.1016/j.ecolind.2009.07.012 10.1109/36.964973 10.1080/13658816.2017.1346255 10.1016/j.isprsjprs.2020.10.018 10.1016/j.isprsjprs.2020.01.001 10.1016/j.rse.2017.12.014 10.1016/j.dib.2021.107408 10.1002/rse2.139 10.3390/rs4092818 10.1016/j.rse.2019.111496 10.3390/rs11040414 10.1016/j.rse.2016.06.016 10.1007/s13595-014-0446-5 10.1016/j.rse.2018.11.007 10.1111/geb.12161 10.1016/j.rse.2018.07.006 10.1002/rse2.9 10.1016/j.rse.2019.01.018 10.3390/rs9100993 10.1016/j.rse.2008.07.007 10.1016/j.ecolind.2015.12.026 10.1016/j.rse.2021.112743 10.1038/nclimate2919 10.1016/j.isprsjprs.2017.07.007 10.1016/j.rse.2019.111262 10.1016/j.isprsjprs.2021.06.005 10.1016/j.isprsjprs.2020.11.023 10.1016/j.isprsjprs.2019.03.016 10.1016/j.rse.2019.111218 10.3390/rs10010055 10.1016/j.rse.2020.111670 10.1002/rse2.137 10.1002/9781444315813 10.3390/rs70302692 10.3732/ajb.1700061 10.1126/science.1256014 10.3390/rs71013895 10.1016/j.rse.2018.05.014 10.3390/rs8121029 10.1016/j.ecoinf.2019.04.001 10.1109/IGARSS.2019.8899782 10.1016/j.ecoinf.2010.06.001 10.1016/j.isprsjprs.2021.02.018 10.1016/j.rse.2012.02.013 10.1016/j.rse.2012.01.019 10.1016/j.rse.2018.09.019 10.1016/j.rse.2019.111536 10.3390/rs12081276 10.1080/17445647.2017.1372316 10.1016/j.rse.2021.112505 10.3390/rs9040309 10.1016/j.rse.2003.11.008 10.1016/j.conbuildmat.2018.09.017 10.1016/j.ecoser.2014.05.006 10.1016/j.rse.2015.12.019 10.1016/j.rse.2005.12.011 10.3390/rs70302668 10.3390/rs11070743 10.1016/j.ecoinf.2014.08.006 10.3390/rs10111794 10.1016/0034-4257(79)90013-0 10.1002/rse2.173 10.1016/j.rse.2019.111626 10.1016/j.isprsjprs.2017.10.008 10.1016/j.isprsjprs.2017.04.016 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs14030492 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Forestry |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_93349aedf5c349318404d30b69b5d7db 10_3390_rs14030492 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c324t-a7d70de0722fcffd6350d8fbb2c5d9f33a1f6a8f53f82b47b9755b73aa1c55133 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760311700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 19:04:36 EDT 2025 Wed Oct 01 14:18:26 EDT 2025 Fri Jul 25 12:02:26 EDT 2025 Sat Nov 29 07:17:09 EST 2025 Tue Nov 18 21:49:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324t-a7d70de0722fcffd6350d8fbb2c5d9f33a1f6a8f53f82b47b9755b73aa1c55133 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2292-619X 0000-0002-0685-4897 |
| OpenAccessLink | https://doaj.org/article/93349aedf5c349318404d30b69b5d7db |
| PQID | 2627826967 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_93349aedf5c349318404d30b69b5d7db proquest_miscellaneous_2648861195 proquest_journals_2627826967 crossref_citationtrail_10_3390_rs14030492 crossref_primary_10_3390_rs14030492 |
| PublicationCentury | 2000 |
| PublicationDate | 20220120 |
| PublicationDateYYYYMMDD | 2022-01-20 |
| PublicationDate_xml | – month: 01 year: 2022 text: 20220120 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Warren (ref_22) 2014; 24 Smith (ref_90) 2020; 6 Feilhauer (ref_88) 2013; 21 Rocchini (ref_37) 2007; 111 Mura (ref_46) 2018; 66 Breiman (ref_64) 2001; 45 Wallis (ref_11) 2016; 174 Hauser (ref_34) 2021; 262 ref_54 Gholizadeh (ref_86) 2019; 221 ref_52 Zeng (ref_68) 2008; 112 Potter (ref_74) 2012; 121 You (ref_44) 2020; 161 Bhattarai (ref_61) 2021; 172 Hamrouni (ref_9) 2021; 171 Hagolle (ref_69) 2015; 7 Belmonte (ref_26) 2019; 6 Reiche (ref_57) 2016; 6 Dash (ref_29) 2017; 131 Randin (ref_16) 2020; 239 Turner (ref_25) 2014; 346 Mercier (ref_59) 2021; 38 Simonson (ref_28) 2014; 5 Hemmerling (ref_53) 2021; 267 Pinaud (ref_65) 2014; 23 Erinjery (ref_62) 2018; 216 Pohjankukka (ref_87) 2017; 31 Cho (ref_76) 2006; 101 Defourny (ref_43) 2019; 221 Mura (ref_21) 2015; 170 Leutner (ref_31) 2012; 4 ref_66 Li (ref_18) 2020; 591 Keenan (ref_10) 2015; 72 Guerschman (ref_35) 2020; 240 ref_63 Oldeland (ref_81) 2010; 10 Matton (ref_71) 1979; 8 Rocchini (ref_20) 2010; 5 Cabido (ref_17) 2001; 16 Tang (ref_13) 2019; 231 Lopes (ref_58) 2020; 6 ref_79 Rocchini (ref_23) 2015; 2 ref_78 Zhao (ref_3) 2018; 213 Madonsela (ref_14) 2017; 133 Arekhi (ref_15) 2017; 189 Gamon (ref_19) 2017; 104 Voormansik (ref_83) 2016; 9 ref_30 Clerici (ref_82) 2017; 13 Heiskanen (ref_1) 2016; 64 Zhao (ref_56) 2022; 269 ref_39 Shoko (ref_84) 2017; 129 Tian (ref_50) 2021; 260 Tuanmu (ref_77) 2012; 121 Rapinel (ref_45) 2019; 223 Harrison (ref_4) 2014; 9 Liu (ref_32) 2019; 151 Zhang (ref_12) 2021; 25 Dandois (ref_27) 2015; 7 Adrian (ref_33) 2021; 175 Quegan (ref_70) 2001; 39 Sulik (ref_75) 2016; 184 Torresani (ref_5) 2019; 52 Ceballos (ref_24) 2015; 7 Vihervaara (ref_7) 2017; 10 Waser (ref_49) 2021; 180 Gong (ref_80) 2018; 189 ref_47 ref_89 ref_42 Schulz (ref_60) 2021; 178 Xiao (ref_73) 2004; 89 ref_41 ref_85 ref_40 Wang (ref_38) 2019; 231 Huete (ref_72) 1997; 59 ref_2 Ge (ref_36) 2018; 218 Forkuor (ref_51) 2020; 236 Gholizadeh (ref_6) 2018; 206 Fassnacht (ref_55) 2016; 186 ref_48 ref_8 Yang (ref_67) 2019; 37 |
| References_xml | – volume: 269 start-page: 112822 year: 2022 ident: ref_56 article-title: Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112822 – volume: 45 start-page: 5 year: 2001 ident: ref_64 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref_78 – volume: 186 start-page: 64 year: 2016 ident: ref_55 article-title: Review of studies on tree species classification from remotely sensed data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.013 – volume: 5 start-page: 719 year: 2014 ident: ref_28 article-title: Applications of airborne lidar for the assessment of animal species diversity publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12219 – volume: 9 start-page: 1382 year: 2016 ident: ref_83 article-title: Observations of Cutting Practices in Agricultural Grasslands Using Polarimetric SAR publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2503773 – volume: 180 start-page: 209 year: 2021 ident: ref_49 article-title: Mapping dominant leaf type based on combined Sentinel-1/-2 data—Challenges for mountainous countries publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.08.017 – volume: 59 start-page: 440 year: 1997 ident: ref_72 article-title: A Comparison of Vegetation Indices over a Global Set of TM Images for EOS-MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00112-5 – volume: 16 start-page: 646 year: 2001 ident: ref_17 article-title: Vive la différence: Plant functional diversity matters to ecosystem processes publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(01)02283-2 – volume: 111 start-page: 423 year: 2007 ident: ref_37 article-title: Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.03.018 – volume: 591 start-page: 125318 year: 2020 ident: ref_18 article-title: Soil, biochar, and nitrogen loss to runoff from loess soil amended with biochar under simulated rainfall publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125318 – volume: 170 start-page: 133 year: 2015 ident: ref_21 article-title: Estimating and mapping forest structural diversity using airborne laser scanning data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.09.016 – volume: 260 start-page: 112456 year: 2021 ident: ref_50 article-title: Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112456 – ident: ref_63 doi: 10.1016/j.pld.2021.03.003 – volume: 189 start-page: 586 year: 2017 ident: ref_15 article-title: Can tree species diversity be assessed with Landsat data in a temperate forest? publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-017-6295-6 – volume: 221 start-page: 38 year: 2019 ident: ref_86 article-title: Detecting prairie biodiversity with airborne remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.10.037 – ident: ref_40 doi: 10.3390/rs10081266 – volume: 10 start-page: 390 year: 2010 ident: ref_81 article-title: Does using species abundance data improve estimates of species diversity from remotely sensed spectral heterogeneity? publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2009.07.012 – volume: 21 start-page: 218 year: 2013 ident: ref_88 article-title: Assessing floristic composition with multispectral sensors—A comparison based on monotemporal and multiseasonal field spectra publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 39 start-page: 2373 year: 2001 ident: ref_70 article-title: Filtering of Multichannel SAR Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.964973 – ident: ref_42 – volume: 31 start-page: 2001 year: 2017 ident: ref_87 article-title: Estimating the prediction performance of spatial models via spatial k-fold cross validation publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2017.1346255 – volume: 10 start-page: 43 year: 2017 ident: ref_7 article-title: How Essential Biodiversity Variables and remote sensing can help national biodiversity monitoring publication-title: Glob. Ecol. Conserv. – volume: 171 start-page: 76 year: 2021 ident: ref_9 article-title: From local to global: A transfer learning-based approach for mapping poplar plantations at national scale using Sentinel-2 publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.10.018 – volume: 161 start-page: 109 year: 2020 ident: ref_44 article-title: Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.01.001 – volume: 206 start-page: 240 year: 2018 ident: ref_6 article-title: Remote sensing of biodiversity: Soil correction and data dimension reduction methods improve assessment of α-diversity (species richness) in prairie ecosystems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.12.014 – volume: 38 start-page: 107408 year: 2021 ident: ref_59 article-title: Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data publication-title: Data Brief. doi: 10.1016/j.dib.2021.107408 – volume: 6 start-page: 316 year: 2020 ident: ref_58 article-title: Combining optical and radar satellite image time series to map natural vegetation: Savannas as an example publication-title: Remote Sens. Ecol. Conserv. doi: 10.1002/rse2.139 – volume: 4 start-page: 2818 year: 2012 ident: ref_31 article-title: Modelling Forest α-Diversity and Floristic Composition—On the Added Value of LiDAR plus Hyperspectral Remote Sensing publication-title: Remote Sens. doi: 10.3390/rs4092818 – volume: 236 start-page: 111496 year: 2020 ident: ref_51 article-title: Above-ground biomass mapping in West African dryland forest using Sentinel-1 and 2 datasets—A case study publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111496 – ident: ref_52 doi: 10.3390/rs11040414 – volume: 184 start-page: 161 year: 2016 ident: ref_75 article-title: Spectral considerations for modeling yield of canola publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.06.016 – volume: 37 start-page: 464 year: 2019 ident: ref_67 article-title: Spatial scale analysis of the species diversity and distribution of rare and endangered plants in northwest Hubei, China publication-title: Plant Sci. J. – volume: 72 start-page: 145 year: 2015 ident: ref_10 article-title: Climate change impacts and adaptation in forest management: A review publication-title: Ann. For. Sci. doi: 10.1007/s13595-014-0446-5 – volume: 221 start-page: 551 year: 2019 ident: ref_43 article-title: Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.007 – volume: 23 start-page: 811 year: 2014 ident: ref_65 article-title: Spatial leave-one-out cross-validation for variable selection in the presence of spatial autocorrelation publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12161 – volume: 216 start-page: 345 year: 2018 ident: ref_62 article-title: Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.07.006 – volume: 2 start-page: 25 year: 2015 ident: ref_23 article-title: Satellite remote sensing to monitor species diversity: Potential and pitfalls publication-title: Remote Sens. Ecol. Conserv. doi: 10.1002/rse2.9 – ident: ref_66 – volume: 223 start-page: 115 year: 2019 ident: ref_45 article-title: Evaluation of Sentinel-2 time-series for mapping floodplain grassland plant communities publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.018 – ident: ref_89 doi: 10.3390/rs9100993 – volume: 112 start-page: 4261 year: 2008 ident: ref_68 article-title: Scaling-based forest structural change detection using an inverted geometric-optical model in the Three Gorges region of China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.07.007 – volume: 64 start-page: 49 year: 2016 ident: ref_1 article-title: Mapping tree species diversity of a tropical montane forest by unsupervised clustering of airborne imaging spectroscopy data publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.12.026 – volume: 267 start-page: 112743 year: 2021 ident: ref_53 article-title: Mapping temperate forest tree species using dense Sentinel-2 time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112743 – volume: 6 start-page: 120 year: 2016 ident: ref_57 article-title: Combining satellite data for better tropical forest monitoring publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2919 – volume: 131 start-page: 1 year: 2017 ident: ref_29 article-title: Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.07.007 – volume: 231 start-page: 111262 year: 2019 ident: ref_13 article-title: Characterizing global forest canopy cover distribution using spaceborne lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111262 – volume: 178 start-page: 97 year: 2021 ident: ref_60 article-title: Land use mapping using Sentinel-1 and Sentinel-2 time series in a heterogeneous landscape in Niger, Sahel publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.06.005 – volume: 172 start-page: 28 year: 2021 ident: ref_61 article-title: Spruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.11.023 – volume: 151 start-page: 277 year: 2019 ident: ref_32 article-title: Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.03.016 – volume: 231 start-page: 111218 year: 2019 ident: ref_38 article-title: Remote sensing of terrestrial plant biodiversity publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111218 – ident: ref_54 doi: 10.3390/rs10010055 – volume: 240 start-page: 111670 year: 2020 ident: ref_35 article-title: Vegetation cover dependence on accumulated antecedent precipitation in Australia: Relationships with photosynthetic and non-photosynthetic vegetation fractions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111670 – volume: 6 start-page: 181 year: 2019 ident: ref_26 article-title: UAV-derived estimates of forest structure to inform ponderosa pine forest restoration publication-title: Remote Sens. Ecol. Conserv. doi: 10.1002/rse2.137 – ident: ref_85 doi: 10.1002/9781444315813 – volume: 7 start-page: 2692 year: 2015 ident: ref_24 article-title: Comparison of Airborne LiDAR and Satellite Hyperspectral Remote Sensing to Estimate Vascular Plant Richness in Deciduous Mediterranean Forests of Central Chile publication-title: Remote Sens. doi: 10.3390/rs70302692 – volume: 104 start-page: 966 year: 2017 ident: ref_19 article-title: Harnessing plant spectra to integrate the biodiversity sciences across biological and spatial scales publication-title: Am. J. Bot. doi: 10.3732/ajb.1700061 – volume: 25 start-page: e01418 year: 2021 ident: ref_12 article-title: How evergreen and deciduous trees coexist during secondary forest succession: Insights into forest restoration mechanisms in Chinese subtropical forest publication-title: Glob. Ecol. Conserv. – volume: 346 start-page: 301 year: 2014 ident: ref_25 article-title: Sensing biodiversity publication-title: Science doi: 10.1126/science.1256014 – volume: 7 start-page: 13895 year: 2015 ident: ref_27 article-title: Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure publication-title: Remote Sens. doi: 10.3390/rs71013895 – volume: 213 start-page: 104 year: 2018 ident: ref_3 article-title: Forest species diversity mapping using airborne LiDAR and hyperspectral data in a subtropical forest in China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.05.014 – ident: ref_2 doi: 10.3390/rs8121029 – volume: 52 start-page: 26 year: 2019 ident: ref_5 article-title: Estimating tree species diversity from space in an alpine conifer forest: The Rao’s Q diversity index meets the spectral variation hypothesis publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2019.04.001 – ident: ref_39 doi: 10.1109/IGARSS.2019.8899782 – volume: 5 start-page: 318 year: 2010 ident: ref_20 article-title: Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2010.06.001 – volume: 175 start-page: 215 year: 2021 ident: ref_33 article-title: Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.02.018 – ident: ref_79 – volume: 121 start-page: 488 year: 2012 ident: ref_77 article-title: Relationship between floristic similarity and vegetated land surface phenology: Implications for the synoptic monitoring of species diversity at broad geographic regions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.02.013 – volume: 121 start-page: 61 year: 2012 ident: ref_74 article-title: Analysis of sapling density regeneration in Yellowstone National Park with hyperspectral remote sensing data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.01.019 – volume: 218 start-page: 162 year: 2018 ident: ref_36 article-title: Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.019 – ident: ref_8 doi: 10.1016/j.rse.2019.111536 – ident: ref_47 doi: 10.3390/rs12081276 – volume: 13 start-page: 718 year: 2017 ident: ref_82 article-title: Fusion of Sentinel-1A and Sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia publication-title: J. Maps doi: 10.1080/17445647.2017.1372316 – volume: 262 start-page: 112505 year: 2021 ident: ref_34 article-title: Towards scalable estimation of plant functional diversity from Sentinel-2: In-situ validation in a heterogeneous (semi-)natural landscape publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112505 – ident: ref_41 doi: 10.3390/rs9040309 – volume: 89 start-page: 519 year: 2004 ident: ref_73 article-title: Satellite-based modeling of gross primary production in an evergreen needleleaf forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.11.008 – volume: 189 start-page: 890 year: 2018 ident: ref_80 article-title: Use of random forests regression for predicting IRI of asphalt pavements publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.09.017 – volume: 9 start-page: 191 year: 2014 ident: ref_4 article-title: Linkages between biodiversity attributes and ecosystem services: A systematic review publication-title: Ecosyst. Serv. doi: 10.1016/j.ecoser.2014.05.006 – volume: 174 start-page: 223 year: 2016 ident: ref_11 article-title: Contrasting performance of Lidar and optical texture models in predicting avian diversity in a tropical mountain forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.019 – volume: 101 start-page: 181 year: 2006 ident: ref_76 article-title: A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.12.011 – volume: 7 start-page: 2668 year: 2015 ident: ref_69 article-title: A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images publication-title: Remote Sens. doi: 10.3390/rs70302668 – ident: ref_30 doi: 10.3390/rs11070743 – volume: 24 start-page: 160 year: 2014 ident: ref_22 article-title: The relationship between the spectral diversity of satellite imagery, habitat heterogeneity, and plant species richness publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2014.08.006 – ident: ref_48 doi: 10.3390/rs10111794 – volume: 8 start-page: 127 year: 1979 ident: ref_71 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 – volume: 6 start-page: 286 year: 2020 ident: ref_90 article-title: Do acoustically detectable species reflect overall diversity? A case study from Australia’s arid zone publication-title: Remote Sens. Ecol. Conserv. doi: 10.1002/rse2.173 – volume: 66 start-page: 126 year: 2018 ident: ref_46 article-title: Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 239 start-page: 111626 year: 2020 ident: ref_16 article-title: Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111626 – volume: 133 start-page: 116 year: 2017 ident: ref_14 article-title: Remote sensing of species diversity using Landsat 8 spectral variables publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.10.008 – volume: 129 start-page: 32 year: 2017 ident: ref_84 article-title: Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.04.016 |
| SSID | ssj0000331904 |
| Score | 2.3655517 |
| Snippet | Plant diversity is an important parameter in maintaining forest ecosystem services, functions and stability. Timely and accurate monitoring and evaluation of... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 492 |
| SubjectTerms | Algorithms confidence interval Confidence intervals Coniferous forests Conservation Datasets Deciduous forests Diversity indices Ecosystem services Evaluation Flowers & plants Forest ecosystems Forest management Forest resources Forestry Heterogeneity image analysis Learning algorithms Machine learning Mapping Mixed forests mountains Plant diversity Polls & surveys prediction Radar Radar data Rainforests random forest Remote sensing Resource conservation satellite imagery time-series Satellites sentinel-1 and -2 Spatial heterogeneity spatial variation species diversity Stability analysis Statistical analysis subtropical evergreen-deciduous broad-leaved mixed forest Taxonomy Terrestrial ecosystems Texture time series analysis Topography Tropical forests Vegetation |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgIMqGRwF1oCAj2LCIJrETO14hSqcCiQ5ILVJ3kZ-lEkqmSVqJXT-iX8iXcK_HMxUCsWFnJVYS5dj3nus45xDy2ltgxUDEM67qHAoUpTNjrMu0K4KFlihDGc0m5HxeHx-rL2nBbUjbKlcxMQZq11lcI58ywSCZCSXk28VZhq5R-HU1WWjcJLdQJaGIW_cO12ssOYcBlpdLVVIO1f20H1CfDlgx-y0PRbn-P6JxTDH79__34R6Qe4lc0nfL0fCQ3PDtFrmD7pto6bZFNpPl-bcfj0h3oFGa4YSibdFI91b7M-gu5DVHu5ZCqICyGdqHs_nRx_nsU1ZMGd3To_55efV5gcT9vI2CrBSYL4UQNPbdAkGnB-hAoU9R_pUubz88Jl_3Z0fvP2TJfSGzQLLGTEsnc-dzyViwIThgJrmrgzHMVk4FznURhK5DxUPNTCmNklVlJNe6sNE15gnZaLvWbxPKtOW-1FZbqH-qoFUZBGfeKAcIyVJMyJsVFo1N0uTokPG9gRIFcWuucZuQV-u-i6Ugx1977SKk6x4ooh0PdP1Jk-ZkozgvlfYuVBYaHGvd0vHcCGUqJ52ZkJ0V2k2a2UNzDfWEvFyfhjmJH1p06-HFNrhrsBYopvf035d4Ru4y_J0iLyBa7ZCNsT_3z8ltezGeDv2LOJh_Abx4AFc priority: 102 providerName: ProQuest |
| Title | Mapping Plant Diversity Based on Combined SENTINEL-1/2 Data—Opportunities for Subtropical Mountainous Forests |
| URI | https://www.proquest.com/docview/2627826967 https://www.proquest.com/docview/2648861195 https://doaj.org/article/93349aedf5c349318404d30b69b5d7db |
| Volume | 14 |
| WOSCitedRecordID | wos000760311700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQiwQbxFMMlJERbFhEk9hOHC8ZmopKTIhokQqbyM9SCWVGkxSJDepH9Av7JdybZIYikNiwiazYC-v6-vocxTmHkJfeAioGIB5xlcdAUJSOjLEu0i4JFlqZCKI3m5BlmZ-cqOqa1RfeCRvkgYfAzYBwC6W9C6mFBkdCIhyPTaZM6qQzWH1jqa6Rqb4Gc0itWAx6pBx4_WzdojId4GH22wnUC_X_UYf7w-XgLrkzokL6epjNPXLDN_fJrdGg_Mv3B2S50CikcErRZKij-5vbFHQOp5Cjy4bCxgaSC-2jojw-LIt3UTJjdF93-uri8v0KYfZ508unUsCpFApGt16ucInoAv0i9BmKtVK06my79iH5eFAcv3kbjV4JkQVI1EVaOhk7H0vGgg3BAY6IXR6MYTZ1KnCuk5DpPKQ85MwIaZRMUyO51ontPV4ekZ1m2fjHhDJtuRfaagtsJQ1aiZBx5o1yEFUpsgl5tYlfbUchcfSz-FoDocBY179iPSEvtmNXg3zGX0fNcRm2I1Dyun8BiVCPiVD_KxEmZG-ziPW4D9uaZQwgUKYyOSHPt92wg_CziG48BLbGO355htJ3T_7HPJ6S2wx_kYgTqEB7ZKdbn_tn5Kb91p216ynZnRdl9WHap-sUb5oe4fNHAc8q_Qz91eGi-vQTsnb0zA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKaLd8CggAgUGAQsWVuwZv2aBECWpGjUJkQhSWZl5eEqlyg6JC-qOj-A7-Ci-hHsdOxUCseuCnWWPxvLM8bn32jPnADzLDWbFmIh7QqY-FihSeVob6ykbOINHcejC2mwimUzSoyM53YAf7V4YWlbZcmJN1LY09I28x2OOwSyWcfJq_tkj1yj6u9paaKxgcZiff8WSbfly2Mf5fc75_mD25sBrXAU8g8lD5anEJr7N_YRzZ5yzGHF9mzqtuYmsdEKowMUqdZFwKddhomUSRToRSgWmdkPBfq_AZkhg78DmdDieflh_1fEFQtoPVzqoQki_t1iSIh7m4fy3yFcbBPzB_3VQ27_xvw3HTbjepM_s9Qrvt2AjL3bgGvmLkmndDmw1pu6fzm9DOVYkPnHMyJipYv12BQrbw8htWVkwJEONWbZl7waT2XAyGHlBj7O-qtTPb9_fzqk0OStqyVmGuT1Dkq0W5ZxgzcbksaFOSOCWrW6_vAPvL-XR70KnKIv8HjCujMhDZZTBCi9ySoYuFjzX0iIikjDuwot27jPTiK-TB8hphkUY4SS7wEkXnq7bzleSI39ttUcQWrcgmfD6RLk4zhrWyaQQoVS5dZHBA0HVfGiFr2OpI5tY3YXdFl1Zw13L7AJaXXiyvoysQ7-SVJHjwGa0LjKNSS7w_r-7eAxbB7PxKBsNJ4cPYJvT5hE_QG7ehU61OMsfwlXzpTpZLh41rxKDj5cN119CcWAX |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBRU2PAqoAwWMgAWLaBI7Ly8QosyMGLUNI1Gkik3wIy6VqmSYSUHd8RF8DZ_Dl3BvHlMhELsu2EWJ5SjO8X3Y1-cAPC0MRsUYiHtCpj4mKFJ5WhvrKRs4g1dx6MJGbCLJsvTwUM7W4Ed_FobKKnub2BhqWxlaIx_ymKMzi2WcDF1XFjEbTV7OP3ukIEU7rb2cRguR3eLsK6ZvyxfTEf7rZ5xPxgev33idwoBnMJCoPZXYxLeFn3DujHMWva9vU6c1N5GVTggVuFilLhIu5TpMtEyiSCdCqcA0yijY7yW4nGCOSeWEs-jDan3HFwhuP2wZUYWQ_nCxJG48jMj5bz6wkQr4wxM07m1y438emJtwvQuq2at2FtyCtaLchA1SHSUpu0242km9fzq7DdW-IkqKI0ZyTTUb9XUpbAf9uWVVydBEaoy9LXs3zg6m2XjPC4acjVStfn77_nZOCctp2RDRMoz4GZreelHNCexsn5Q31DHR3rL29cs78P5CPv0urJdVWWwB48qIIlRGGcz7Iqdk6GLBCy0togNBM4DnPQ5y01GykzLISY6pGWEmP8fMAJ6s2s5bIpK_ttohOK1aEHl4c6NaHOWdLcqlEKFUhXWRwQtBOX5oha9jqSObWD2A7R5peWfRlvk5zAbwePUYbRFtMKmywIHNqVoyjYlE8N6_u3gEG4jRfG-a7d6Ha5xOlPgBGuxtWK8Xp8UDuGK-1MfLxcNmTjH4eNFY_QVraWd6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Plant+Diversity+Based+on+Combined+SENTINEL-1%2F2+Data%E2%80%94Opportunities+for+Subtropical+Mountainous+Forests&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Yang%2C+Qichi&rft.au=Wang%2C+Lihui&rft.au=Huang%2C+Jinliang&rft.au=Lu%2C+Lijie&rft.date=2022-01-20&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=3&rft_id=info:doi/10.3390%2Frs14030492&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |