Modelling and optimizing combination therapeutic strategies for KRAS- and EGFR-mutant lung cancer

Non-small cell lung carcinoma (NSCLC) is well-known for its high incidence (about 80% of lung cancer) and genetic heterogeneity. Personalized driver mutations such as EGFR and KRAS have established targeted therapies with kinase inhibitors, whereas immune checkpoint inhibitors (ICIs) have revolution...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of bioinformatics and computational biology Ročník 23; číslo 5; s. 2550017
Hlavní autoři: Wu, Lanqi, Yu, Ruocheng, Yao, Minghui, Rahaman, Md Matiur, Fang, Zhaoyuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore 01.10.2025
Témata:
ISSN:1757-6334, 1757-6334
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Non-small cell lung carcinoma (NSCLC) is well-known for its high incidence (about 80% of lung cancer) and genetic heterogeneity. Personalized driver mutations such as EGFR and KRAS have established targeted therapies with kinase inhibitors, whereas immune checkpoint inhibitors (ICIs) have revolutionized immunotherapy. However, challenges such as frequent drug resistance and low response rates highlight the need for novel therapeutic strategies. Boolean network modeling is a powerful mathematical tool to simulate complex biological processes and optimize potential treatment strategies. This study developed a Boolean network model for NSCLC patients with different mutational backgrounds and evaluated the therapeutic effects by incorporating key kinase mutation inhibitors and immunological interventions. Simulations in both the Boolean network model and another quantitative model consistently suggested that the optimal therapeutic strategy involves a combination of KRAS inhibitor and ICI for KRAS-mutant patients, which is also in line with mouse model studies and the KRYSTAL-7 phase-2 clinical trial data. It would be reasonable to expect further validations from the recently announced KRYSTAL-7 phase-3 clinical trial comparing the combined therapy over pembrolizumab monotherapy in the future. Our approach highlights the value of computational modeling to evaluate and refine therapeutic strategies for precision oncology.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1757-6334
1757-6334
DOI:10.1142/S0219720025500179