Nanoporous Crystalline Materials for the Recognition and Applications of Nucleic Acids
Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition...
Uloženo v:
| Vydáno v: | Advanced materials (Weinheim) Ročník 37; číslo 31; s. e2305171 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
01.08.2025
|
| Témata: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA‐based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost‐effective diagnostic and therapeutic tools with widespread applications. |
|---|---|
| AbstractList | Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA-based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost-effective diagnostic and therapeutic tools with widespread applications. Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA-based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost-effective diagnostic and therapeutic tools with widespread applications.Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA-based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost-effective diagnostic and therapeutic tools with widespread applications. |
| Author | Yu, Long Xiao, Yuxiu Sun, Yuqing Wang, Yuhao Zhou, Xiang Wu, Gaosong Tang, Yongling Peng, Shuang |
| Author_xml | – sequence: 1 givenname: Long surname: Yu fullname: Yu, Long organization: College of Chemistry and Molecular Sciences Key Laboratory of Biomedical Polymers‐Ministry of Education Department of Hematology of Zhongnan Hospital Taikang Center for Life and Medical Sciences Wuhan University Wuhan 430072 China, Department of Thyroid and Breast Surgery Zhongnan Hospital of Wuhan University School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China, Department of Thyroid and Breast Surgery Zhongnan Hospital of Wuhan University Wuhan 430071 China – sequence: 2 givenname: Yuhao surname: Wang fullname: Wang, Yuhao organization: College of Chemistry and Molecular Sciences Key Laboratory of Biomedical Polymers‐Ministry of Education Department of Hematology of Zhongnan Hospital Taikang Center for Life and Medical Sciences Wuhan University Wuhan 430072 China – sequence: 3 givenname: Yuqing surname: Sun fullname: Sun, Yuqing organization: College of Chemistry and Molecular Sciences Key Laboratory of Biomedical Polymers‐Ministry of Education Department of Hematology of Zhongnan Hospital Taikang Center for Life and Medical Sciences Wuhan University Wuhan 430072 China – sequence: 4 givenname: Yongling surname: Tang fullname: Tang, Yongling organization: College of Chemistry and Molecular Sciences Key Laboratory of Biomedical Polymers‐Ministry of Education Department of Hematology of Zhongnan Hospital Taikang Center for Life and Medical Sciences Wuhan University Wuhan 430072 China – sequence: 5 givenname: Yuxiu surname: Xiao fullname: Xiao, Yuxiu organization: Department of Thyroid and Breast Surgery Zhongnan Hospital of Wuhan University School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China – sequence: 6 givenname: Gaosong surname: Wu fullname: Wu, Gaosong organization: Department of Thyroid and Breast Surgery Zhongnan Hospital of Wuhan University Wuhan 430071 China – sequence: 7 givenname: Shuang surname: Peng fullname: Peng, Shuang organization: College of Chemistry and Molecular Sciences Key Laboratory of Biomedical Polymers‐Ministry of Education Department of Hematology of Zhongnan Hospital Taikang Center for Life and Medical Sciences Wuhan University Wuhan 430072 China – sequence: 8 givenname: Xiang orcidid: 0000-0002-1829-9368 surname: Zhou fullname: Zhou, Xiang organization: College of Chemistry and Molecular Sciences Key Laboratory of Biomedical Polymers‐Ministry of Education Department of Hematology of Zhongnan Hospital Taikang Center for Life and Medical Sciences Wuhan University Wuhan 430072 China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37616525$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1LHTEUxUNR6tN261IC3biZ15vvyfLxaG3BKojtNmSSjEbmJdNkZuF_77yqXQiuLhd-53DvOcfoIOUUEDolsCYA9Kv1O7umQBkIosgHtCKCkoaDFgdoBZqJRkveHqHjWh8AQEuQH9ERU5JIQcUK_bmyKY-55LnibXmskx2GmAL-ZadQoh0q7nPB033AN8HluxSnmBO2yePNOA7R2f1ece7x1eyGEB3euOjrJ3TYL-Lw-WWeoN_fv91ufzSX1xc_t5vLxjHKpsZzJZiH1nIqfK-6jrsALACRzOvOUa0CgCJtr5l2UvQSOkoY6WTvmbXashN0_uw7lvx3DnUyu1hdGAabwvKSoa1QLVecwYJ-eYM-5Lmk5Tqz3KIklZrzhTp7oeZuF7wZS9zZ8mheE1sA_gy4kmstoTcuTv9SmIqNgyFg9sWYfTHmfzGLbP1G9ur8juAJltaOnA |
| CitedBy_id | crossref_primary_10_1002_aenm_202502432 crossref_primary_10_1016_j_ccr_2024_215965 crossref_primary_10_1016_j_snb_2024_137019 crossref_primary_10_1021_acssensors_4c03180 crossref_primary_10_1002_smll_202504246 crossref_primary_10_1002_smll_202404549 crossref_primary_10_1016_j_actamat_2024_120048 crossref_primary_10_1016_j_bios_2023_115824 crossref_primary_10_3390_bios15070469 crossref_primary_10_1002_adfm_202408846 crossref_primary_10_1016_j_ijbiomac_2025_141331 |
| Cites_doi | 10.1002/smll.202201779 10.1021/acs.langmuir.1c02253 10.1038/s41586-022-04763-5 10.1016/j.cell.2022.05.003 10.1039/C9SC03202A 10.1039/D1CS00920F 10.1021/acs.analchem.1c05571 10.1038/nchem.2689 10.1021/acssensors.9b01759 10.1021/acsami.1c14998 10.1016/j.ccr.2021.214298 10.1002/anie.202011174 10.1016/j.talanta.2021.122896 10.1021/acs.analchem.2c04218 10.1002/adfm.201902237 10.1016/j.aca.2022.339806 10.1038/s41586-022-05029-w 10.1002/anie.201902714 10.1021/acs.nanolett.1c04633 10.1002/advs.202205097 10.1186/s12951-022-01603-6 10.1021/acs.analchem.2c04482 10.1016/j.apsusc.2021.150202 10.1021/acs.chemrev.0c01332 10.1080/07391102.2020.1719198 10.1002/adfm.201909062 10.1021/jacs.8b08770 10.1038/s41565-022-01168-3 10.1039/D2SC00188H 10.1021/acsami.2c11458 10.1021/acsami.1c00134 10.1039/C8NR09071H 10.1021/acs.analchem.1c02602 10.1016/j.cej.2022.134992 10.1021/acs.analchem.1c02125 10.1021/acs.analchem.1c05222 10.1016/j.biomaterials.2020.120160 10.1126/science.1230444 10.1016/j.bios.2022.114320 10.1039/D0CS00017E 10.1002/anie.202012681 10.1021/ar300265y 10.1002/adfm.201805341 10.1021/acs.accounts.9b00575 10.1038/nrg3296 10.1016/j.aca.2022.340136 10.1039/C9NR08127E 10.1021/acs.analchem.0c05060 10.1021/acsami.8b07137 10.1021/acs.analchem.1c04105 10.1002/smll.202103424 10.1016/j.snb.2022.131895 10.1021/acs.langmuir.2c00932 10.1021/acs.analchem.2c02916 10.1002/adfm.202110694 10.1016/j.snb.2022.131807 10.1021/acs.analchem.8b05599 10.1021/acs.analchem.2c05671 10.1021/acsami.1c18053 10.1021/acsnano.0c09996 10.1021/acs.chemrev.1c00241 10.1039/D2NR04095F 10.1002/adfm.202104519 10.1038/s41565-021-00898-0 10.1021/jacs.9b10936 10.1006/jmbi.2000.4040 10.1016/j.snb.2017.06.085 10.1038/s41591-022-01746-x 10.1126/science.aam9321 10.1002/adfm.201705137 10.1007/s11426-021-9998-x 10.1038/s41563-022-01368-1 10.1021/acs.analchem.1c02105 10.1021/acs.analchem.9b04691 10.1039/C7CS00543A 10.1126/science.1246738 10.1039/D2SC03013F 10.1002/adfm.202300309 10.1126/science.1120411 10.1039/C8QI01031E 10.1002/adfm.201702102 10.1021/jacs.3c02128 10.1016/j.bioactmat.2021.11.033 10.1021/acs.analchem.1c02878 10.1021/acsnano.1c04681 10.1021/jacs.7b04096 10.1093/nar/gkl655 10.1126/science.abi9335 10.1039/D1SC04229G 10.1038/s41551‐023‐01033‐1 10.1038/s41467-018-03650-w 10.1021/acsami.1c12622 10.1021/acsami.9b18805 10.1016/j.snb.2020.128456 10.1021/acsami.0c15089 10.1016/j.bios.2022.114668 10.1039/C8TB03206H 10.1039/C9CS00299E 10.1126/science.abm6304 10.1021/jacs.1c03129 10.1002/adma.202206842 10.1016/j.snb.2022.131676 10.1021/acs.analchem.0c04302 10.1021/acsmaterialslett.1c00797 10.1038/s41586-021-03642-9 10.31635/ccschem.019.20180011 10.1002/anie.202211358 10.1038/s41576-021-00439-4 10.1021/acs.nanolett.2c04022 10.1038/s41586-022-04443-4 10.1038/s41587-022-01486-w 10.1002/adma.202210895 10.1016/j.bios.2019.02.040 10.1038/378667a0 10.1038/s41467-019-09486-2 10.1021/jacs.0c10442 10.1039/D1CS00600B 10.1021/acs.nanolett.0c04759 10.1021/jacsau.1c00516 10.1021/acs.chemrev.9b00550 10.1038/s41586-020-2477-4 10.1038/s41565-022-01179-0 10.1016/j.cell.2020.09.001 10.1021/acs.chemrev.6b00160 10.1093/nsr/nwx030 10.1021/ja1042935 10.1128/mbio.02220‐22 10.1002/adma.202101857 10.1021/acs.analchem.8b02127 10.1021/acs.analchem.2c05329 10.1038/nature13905 10.1039/C8NR00193F 10.1021/acsnano.2c04886 10.1021/acs.analchem.2c03658 10.1021/acsomega.1c04319 10.31635/ccschem.020.201900078 10.1021/jacs.2c03326 10.1021/acs.analchem.1c03545 10.1021/acsami.1c15838 10.1016/j.trac.2021.116182 10.1038/s41596-019-0210-2 10.1007/s00604-018-3011-3 10.1002/anie.202008259 10.1126/sciadv.aaz6108 10.1021/acsabm.9b01189 10.1016/j.ccr.2018.09.009 10.1021/acsnano.2c11241 10.1126/science.abj0890 10.1002/adfm.202212277 10.1126/science.1178178 10.1038/nature10125 10.1038/s41586-022-04836-5 10.1038/s41563-023-01523-2 10.1016/j.chempr.2019.08.015 10.1021/jacs.2c07000 10.1016/j.nantod.2022.101623 10.1021/acs.analchem.9b01343 10.1021/acs.analchem.9b02569 10.1038/s41586-020-2738-2 10.1016/j.ccr.2016.05.007 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley‐VCH GmbH. 2025 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2023 Wiley‐VCH GmbH. – notice: 2025 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202305171 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| ExternalDocumentID | 37616525 10_1002_adma_202305171 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 91753201 – fundername: National Key Research and Development Program of China grantid: 2022YFA 1303500 – fundername: National Natural Science Foundation of China grantid: 21721005 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O8X O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WTY WXSBR WYISQ XG1 XPP XV2 YR2 ZY4 ZZTAW ~02 ~IA ~WT ALUQN CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c323t-d4753d08a425df7bb4ce03e0163d9bc297e00718f939c65f60b2131b6fd3aa9a3 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001110931800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Sun Nov 09 10:08:24 EST 2025 Fri Aug 08 08:40:54 EDT 2025 Sat Aug 09 01:32:17 EDT 2025 Sat Nov 29 07:23:48 EST 2025 Tue Nov 18 22:14:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 31 |
| Keywords | therapeutic tools nucleic acids gene delivery agents diagnostic tools nanoporous crystalline materials |
| Language | English |
| License | 2023 Wiley‐VCH GmbH. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c323t-d4753d08a425df7bb4ce03e0163d9bc297e00718f939c65f60b2131b6fd3aa9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-1829-9368 |
| PMID | 37616525 |
| PQID | 3237626944 |
| PQPubID | 2045203 |
| ParticipantIDs | proquest_miscellaneous_2857847430 proquest_journals_3237626944 pubmed_primary_37616525 crossref_citationtrail_10_1002_adma_202305171 crossref_primary_10_1002_adma_202305171 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 Wang Z. (e_1_2_9_87_1) 2022; 61 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 Zhang Y. (e_1_2_9_119_1) 2023; 13 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_160_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 He Y. (e_1_2_9_164_1) 2021; 2 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 e_1_2_9_49_1 Hao Q. (e_1_2_9_51_1) 2023; 66 e_1_2_9_130_1 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_161_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_29_1 e_1_2_9_150_1 |
| References_xml | – ident: e_1_2_9_106_1 doi: 10.1002/smll.202201779 – ident: e_1_2_9_115_1 doi: 10.1021/acs.langmuir.1c02253 – ident: e_1_2_9_36_1 doi: 10.1038/s41586-022-04763-5 – ident: e_1_2_9_10_1 doi: 10.1016/j.cell.2022.05.003 – ident: e_1_2_9_127_1 doi: 10.1039/C9SC03202A – ident: e_1_2_9_17_1 doi: 10.1039/D1CS00920F – ident: e_1_2_9_104_1 doi: 10.1021/acs.analchem.1c05571 – ident: e_1_2_9_66_1 doi: 10.1038/nchem.2689 – ident: e_1_2_9_92_1 doi: 10.1021/acssensors.9b01759 – ident: e_1_2_9_157_1 doi: 10.1021/acsami.1c14998 – ident: e_1_2_9_46_1 doi: 10.1016/j.ccr.2021.214298 – volume: 2 year: 2021 ident: e_1_2_9_164_1 publication-title: Cell Rep. – ident: e_1_2_9_9_1 doi: 10.1002/anie.202011174 – volume: 13 year: 2023 ident: e_1_2_9_119_1 publication-title: Catalysts – ident: e_1_2_9_154_1 doi: 10.1016/j.talanta.2021.122896 – ident: e_1_2_9_42_1 doi: 10.1021/acs.analchem.2c04218 – ident: e_1_2_9_84_1 doi: 10.1002/adfm.201902237 – ident: e_1_2_9_61_1 doi: 10.1016/j.aca.2022.339806 – ident: e_1_2_9_35_1 doi: 10.1038/s41586-022-05029-w – ident: e_1_2_9_69_1 doi: 10.1002/anie.201902714 – ident: e_1_2_9_145_1 doi: 10.1021/acs.nanolett.1c04633 – ident: e_1_2_9_80_1 doi: 10.1002/advs.202205097 – ident: e_1_2_9_81_1 doi: 10.1186/s12951-022-01603-6 – ident: e_1_2_9_151_1 doi: 10.1021/acs.analchem.2c04482 – ident: e_1_2_9_107_1 doi: 10.1016/j.apsusc.2021.150202 – ident: e_1_2_9_11_1 doi: 10.1021/acs.chemrev.0c01332 – ident: e_1_2_9_15_1 doi: 10.1080/07391102.2020.1719198 – ident: e_1_2_9_54_1 doi: 10.1002/adfm.201909062 – ident: e_1_2_9_52_1 doi: 10.1021/jacs.8b08770 – ident: e_1_2_9_37_1 doi: 10.1038/s41565-022-01168-3 – ident: e_1_2_9_122_1 doi: 10.1039/D2SC00188H – ident: e_1_2_9_161_1 doi: 10.1021/acsami.2c11458 – ident: e_1_2_9_41_1 doi: 10.1021/acsami.1c00134 – ident: e_1_2_9_118_1 doi: 10.1039/C8NR09071H – ident: e_1_2_9_158_1 doi: 10.1021/acs.analchem.1c02602 – ident: e_1_2_9_78_1 doi: 10.1016/j.cej.2022.134992 – ident: e_1_2_9_114_1 doi: 10.1021/acs.analchem.1c02125 – ident: e_1_2_9_152_1 doi: 10.1021/acs.analchem.1c05222 – ident: e_1_2_9_72_1 doi: 10.1016/j.biomaterials.2020.120160 – ident: e_1_2_9_30_1 doi: 10.1126/science.1230444 – ident: e_1_2_9_43_1 doi: 10.1016/j.bios.2022.114320 – ident: e_1_2_9_49_1 doi: 10.1039/D0CS00017E – ident: e_1_2_9_53_1 doi: 10.1002/anie.202012681 – ident: e_1_2_9_59_1 doi: 10.1021/ar300265y – ident: e_1_2_9_86_1 doi: 10.1002/adfm.201805341 – ident: e_1_2_9_32_1 doi: 10.1021/acs.accounts.9b00575 – ident: e_1_2_9_63_1 doi: 10.1038/nrg3296 – ident: e_1_2_9_97_1 doi: 10.1016/j.aca.2022.340136 – ident: e_1_2_9_73_1 doi: 10.1039/C9NR08127E – ident: e_1_2_9_95_1 doi: 10.1021/acs.analchem.0c05060 – ident: e_1_2_9_99_1 doi: 10.1021/acsami.8b07137 – ident: e_1_2_9_100_1 doi: 10.1021/acs.analchem.1c04105 – ident: e_1_2_9_111_1 doi: 10.1002/smll.202103424 – ident: e_1_2_9_133_1 doi: 10.1016/j.snb.2022.131895 – ident: e_1_2_9_108_1 doi: 10.1021/acs.langmuir.2c00932 – ident: e_1_2_9_142_1 doi: 10.1021/acs.analchem.2c02916 – ident: e_1_2_9_139_1 doi: 10.1002/adfm.202110694 – ident: e_1_2_9_153_1 doi: 10.1016/j.snb.2022.131807 – ident: e_1_2_9_113_1 doi: 10.1021/acs.analchem.8b05599 – ident: e_1_2_9_68_1 doi: 10.1021/acs.analchem.2c05671 – ident: e_1_2_9_75_1 doi: 10.1021/acsami.1c18053 – ident: e_1_2_9_83_1 doi: 10.1021/acsnano.0c09996 – ident: e_1_2_9_7_1 doi: 10.1021/acs.chemrev.1c00241 – ident: e_1_2_9_148_1 doi: 10.1039/D2NR04095F – ident: e_1_2_9_140_1 doi: 10.1002/adfm.202104519 – ident: e_1_2_9_23_1 doi: 10.1038/s41565-021-00898-0 – ident: e_1_2_9_57_1 doi: 10.1021/jacs.9b10936 – ident: e_1_2_9_58_1 doi: 10.1006/jmbi.2000.4040 – ident: e_1_2_9_93_1 doi: 10.1016/j.snb.2017.06.085 – ident: e_1_2_9_128_1 doi: 10.1038/s41591-022-01746-x – ident: e_1_2_9_1_1 doi: 10.1126/science.aam9321 – ident: e_1_2_9_85_1 doi: 10.1002/adfm.201705137 – ident: e_1_2_9_146_1 doi: 10.1007/s11426-021-9998-x – ident: e_1_2_9_45_1 doi: 10.1038/s41563-022-01368-1 – ident: e_1_2_9_147_1 doi: 10.1021/acs.analchem.1c02105 – ident: e_1_2_9_163_1 doi: 10.1021/acs.analchem.9b04691 – ident: e_1_2_9_31_1 doi: 10.1039/C7CS00543A – ident: e_1_2_9_55_1 doi: 10.1126/science.1246738 – ident: e_1_2_9_18_1 doi: 10.1039/D2SC03013F – ident: e_1_2_9_38_1 doi: 10.1002/adfm.202300309 – ident: e_1_2_9_135_1 doi: 10.1126/science.1120411 – ident: e_1_2_9_94_1 doi: 10.1039/C8QI01031E – ident: e_1_2_9_67_1 doi: 10.1002/adfm.201702102 – ident: e_1_2_9_132_1 doi: 10.1021/jacs.3c02128 – ident: e_1_2_9_150_1 doi: 10.1016/j.bioactmat.2021.11.033 – ident: e_1_2_9_102_1 doi: 10.1021/acs.analchem.1c02878 – ident: e_1_2_9_82_1 doi: 10.1021/acsnano.1c04681 – ident: e_1_2_9_144_1 doi: 10.1021/jacs.7b04096 – ident: e_1_2_9_62_1 doi: 10.1093/nar/gkl655 – ident: e_1_2_9_20_1 doi: 10.1126/science.abi9335 – ident: e_1_2_9_88_1 doi: 10.1039/D1SC04229G – ident: e_1_2_9_5_1 doi: 10.1038/s41551‐023‐01033‐1 – ident: e_1_2_9_60_1 doi: 10.1038/s41467-018-03650-w – ident: e_1_2_9_131_1 doi: 10.1021/acsami.1c12622 – ident: e_1_2_9_109_1 doi: 10.1021/acsami.9b18805 – ident: e_1_2_9_110_1 doi: 10.1016/j.snb.2020.128456 – ident: e_1_2_9_74_1 doi: 10.1021/acsami.0c15089 – ident: e_1_2_9_149_1 doi: 10.1016/j.bios.2022.114668 – ident: e_1_2_9_159_1 doi: 10.1039/C8TB03206H – ident: e_1_2_9_48_1 doi: 10.1039/C9CS00299E – ident: e_1_2_9_27_1 doi: 10.1126/science.abm6304 – ident: e_1_2_9_6_1 doi: 10.1021/jacs.1c03129 – ident: e_1_2_9_33_1 doi: 10.1002/adma.202206842 – ident: e_1_2_9_91_1 doi: 10.1016/j.snb.2022.131676 – ident: e_1_2_9_96_1 doi: 10.1021/acs.analchem.0c04302 – ident: e_1_2_9_125_1 doi: 10.1021/acsmaterialslett.1c00797 – ident: e_1_2_9_130_1 doi: 10.1038/s41586-021-03642-9 – ident: e_1_2_9_162_1 doi: 10.31635/ccschem.019.20180011 – ident: e_1_2_9_19_1 doi: 10.1002/anie.202211358 – ident: e_1_2_9_22_1 doi: 10.1038/s41576-021-00439-4 – ident: e_1_2_9_105_1 doi: 10.1021/acs.nanolett.2c04022 – ident: e_1_2_9_136_1 doi: 10.1038/s41586-022-04443-4 – ident: e_1_2_9_13_1 doi: 10.1038/s41587-022-01486-w – ident: e_1_2_9_79_1 doi: 10.1002/adma.202210895 – ident: e_1_2_9_141_1 doi: 10.1016/j.bios.2019.02.040 – ident: e_1_2_9_34_1 doi: 10.1038/378667a0 – ident: e_1_2_9_120_1 doi: 10.1038/s41467-019-09486-2 – ident: e_1_2_9_56_1 doi: 10.1021/jacs.0c10442 – ident: e_1_2_9_47_1 doi: 10.1039/D1CS00600B – volume: 66 start-page: 620 year: 2023 ident: e_1_2_9_51_1 publication-title: Sci. China Chem. – ident: e_1_2_9_116_1 doi: 10.1021/acs.nanolett.0c04759 – ident: e_1_2_9_123_1 doi: 10.1021/jacsau.1c00516 – ident: e_1_2_9_137_1 doi: 10.1021/acs.chemrev.9b00550 – ident: e_1_2_9_12_1 doi: 10.1038/s41586-020-2477-4 – ident: e_1_2_9_4_1 doi: 10.1038/s41565-022-01179-0 – ident: e_1_2_9_129_1 doi: 10.1016/j.cell.2020.09.001 – ident: e_1_2_9_65_1 doi: 10.1021/acs.chemrev.6b00160 – ident: e_1_2_9_160_1 doi: 10.1093/nsr/nwx030 – ident: e_1_2_9_29_1 doi: 10.1021/ja1042935 – ident: e_1_2_9_16_1 doi: 10.1128/mbio.02220‐22 – ident: e_1_2_9_50_1 doi: 10.1002/adma.202101857 – volume: 61 year: 2022 ident: e_1_2_9_87_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_9_101_1 doi: 10.1021/acs.analchem.8b02127 – ident: e_1_2_9_143_1 doi: 10.1021/acs.analchem.2c05329 – ident: e_1_2_9_8_1 doi: 10.1038/nature13905 – ident: e_1_2_9_89_1 doi: 10.1039/C8NR00193F – ident: e_1_2_9_77_1 doi: 10.1021/acsnano.2c04886 – ident: e_1_2_9_155_1 doi: 10.1021/acs.analchem.2c03658 – ident: e_1_2_9_64_1 doi: 10.1021/acsomega.1c04319 – ident: e_1_2_9_44_1 doi: 10.31635/ccschem.020.201900078 – ident: e_1_2_9_121_1 doi: 10.1021/jacs.2c03326 – ident: e_1_2_9_156_1 doi: 10.1021/acs.analchem.1c03545 – ident: e_1_2_9_134_1 doi: 10.1021/acsami.1c15838 – ident: e_1_2_9_138_1 doi: 10.1016/j.trac.2021.116182 – ident: e_1_2_9_2_1 doi: 10.1038/s41596-019-0210-2 – ident: e_1_2_9_90_1 doi: 10.1007/s00604-018-3011-3 – ident: e_1_2_9_124_1 doi: 10.1002/anie.202008259 – ident: e_1_2_9_70_1 doi: 10.1126/sciadv.aaz6108 – ident: e_1_2_9_98_1 doi: 10.1021/acsabm.9b01189 – ident: e_1_2_9_39_1 doi: 10.1016/j.ccr.2018.09.009 – ident: e_1_2_9_117_1 doi: 10.1021/acsnano.2c11241 – ident: e_1_2_9_25_1 doi: 10.1126/science.abj0890 – ident: e_1_2_9_40_1 doi: 10.1002/adfm.202212277 – ident: e_1_2_9_21_1 doi: 10.1126/science.1178178 – ident: e_1_2_9_24_1 doi: 10.1038/nature10125 – ident: e_1_2_9_14_1 doi: 10.1038/s41586-022-04836-5 – ident: e_1_2_9_28_1 doi: 10.1038/s41563-023-01523-2 – ident: e_1_2_9_71_1 doi: 10.1016/j.chempr.2019.08.015 – ident: e_1_2_9_3_1 doi: 10.1021/jacs.2c07000 – ident: e_1_2_9_76_1 doi: 10.1016/j.nantod.2022.101623 – ident: e_1_2_9_103_1 doi: 10.1021/acs.analchem.9b01343 – ident: e_1_2_9_112_1 doi: 10.1021/acs.analchem.9b02569 – ident: e_1_2_9_26_1 doi: 10.1038/s41586-020-2738-2 – ident: e_1_2_9_126_1 doi: 10.1016/j.ccr.2016.05.007 |
| SSID | ssj0009606 |
| Score | 2.5458908 |
| SecondaryResourceType | review_article |
| Snippet | Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | e2305171 |
| SubjectTerms | Acids Biocompatibility Biological activity Biosensing Techniques - methods Data storage Deoxyribonucleic acid DNA DNA - analysis DNA - chemistry Humans Metal-organic frameworks Metal-Organic Frameworks - chemistry Nanopores Nucleic acids Nucleic Acids - analysis Nucleic Acids - chemistry Pore size Recognition |
| Title | Nanoporous Crystalline Materials for the Recognition and Applications of Nucleic Acids |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37616525 https://www.proquest.com/docview/3237626944 https://www.proquest.com/docview/2857847430 |
| Volume | 37 |
| WOSCitedRecordID | wos001110931800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbolgMcEG8WSmUkBAcUmth5OMdVacVhWVCVlu0pcmJbjVSS7T5Q-feMY8fJCiqVA5doNTtxVp5vJzP2eD6E3oJcRIFknoyk8EIVxh4XXHmipHEo_CL1WxaFs2kym7H5PP1mN9pXLZ1AUtfs-jpd_FdTgwyMrY_O_oO53aAggM9gdLiC2eF6K8ODv2wgqNalrYfLXxD8XbaR5Be-Nk93hYUnXe2QLUieDPayzUICjFyVHyZlZU4Du261Xd3ADzcmxKnfZVVfSE3O7NYWzjdt2t_Yt2O7bm98y_nmgjf9hlRtZFdVr5l1mo0-aGzldnmCRK44znlUopNUw6T5Uf5FZjynhFwoCgwdyx9u3bSJ5aLtFDVQ3O6fPfuaH59Op3l2NM_eLa48TS2mt-Atz8oO2iVJlLIR2v10Aop9b-a4pWB1v6rr7emTg-1HbscuNyQkbWCSPUQPbEaBJwYJj9AdWT9G9wd9Jp-gsx4TeIAJ7DCBARMYMIEHmMCACTzEBG4UtpjALSaeotPjo-zws2cJNbySErr2RAjJqfAZB0ctVFIUoWaLkxD1U5EWJUkTqUNOplKalnGkYr8gAQ2KWAnKecrpMzSqm1q-QFi3LUwZ95XP_bAkkBgzwmEYSRUE5SoZI6-bqry03eY16cllbvpkk1xPbe6mdozeO_2F6bNyo-ZeN_O5_dutcqqLu_Sh7HCM3rivwVPq7S9eS5jfnDB4O4UQMftj9NxYzD0K7g7iiEQvb3H3K3SvB_oeGq2XG_ka3S1_rqvVch_tJHO2byH2G33fk7I |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoporous+Crystalline+Materials+for+the+Recognition+and+Applications+of+Nucleic+Acids&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yu%2C+Long&rft.au=Wang%2C+Yuhao&rft.au=Sun%2C+Yuqing&rft.au=Tang%2C+Yongling&rft.date=2025-08-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.spage=e2305171&rft_id=info:doi/10.1002%2Fadma.202305171&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |