Nanoporous Crystalline Materials for the Recognition and Applications of Nucleic Acids

Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced materials (Weinheim) Ročník 37; číslo 31; s. e2305171
Hlavní autoři: Yu, Long, Wang, Yuhao, Sun, Yuqing, Tang, Yongling, Xiao, Yuxiu, Wu, Gaosong, Peng, Shuang, Zhou, Xiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 01.08.2025
Témata:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA‐based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost‐effective diagnostic and therapeutic tools with widespread applications.
AbstractList Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA-based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost-effective diagnostic and therapeutic tools with widespread applications.
Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA-based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost-effective diagnostic and therapeutic tools with widespread applications.Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA-based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost-effective diagnostic and therapeutic tools with widespread applications.
Author Yu, Long
Xiao, Yuxiu
Sun, Yuqing
Wang, Yuhao
Zhou, Xiang
Wu, Gaosong
Tang, Yongling
Peng, Shuang
Author_xml – sequence: 1
  givenname: Long
  surname: Yu
  fullname: Yu, Long
  organization: College of Chemistry and Molecular Sciences Key Laboratory of Biomedical Polymers‐Ministry of Education Department of Hematology of Zhongnan Hospital Taikang Center for Life and Medical Sciences Wuhan University Wuhan 430072 China, Department of Thyroid and Breast Surgery Zhongnan Hospital of Wuhan University School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China, Department of Thyroid and Breast Surgery Zhongnan Hospital of Wuhan University Wuhan 430071 China
– sequence: 2
  givenname: Yuhao
  surname: Wang
  fullname: Wang, Yuhao
  organization: College of Chemistry and Molecular Sciences Key Laboratory of Biomedical Polymers‐Ministry of Education Department of Hematology of Zhongnan Hospital Taikang Center for Life and Medical Sciences Wuhan University Wuhan 430072 China
– sequence: 3
  givenname: Yuqing
  surname: Sun
  fullname: Sun, Yuqing
  organization: College of Chemistry and Molecular Sciences Key Laboratory of Biomedical Polymers‐Ministry of Education Department of Hematology of Zhongnan Hospital Taikang Center for Life and Medical Sciences Wuhan University Wuhan 430072 China
– sequence: 4
  givenname: Yongling
  surname: Tang
  fullname: Tang, Yongling
  organization: College of Chemistry and Molecular Sciences Key Laboratory of Biomedical Polymers‐Ministry of Education Department of Hematology of Zhongnan Hospital Taikang Center for Life and Medical Sciences Wuhan University Wuhan 430072 China
– sequence: 5
  givenname: Yuxiu
  surname: Xiao
  fullname: Xiao, Yuxiu
  organization: Department of Thyroid and Breast Surgery Zhongnan Hospital of Wuhan University School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
– sequence: 6
  givenname: Gaosong
  surname: Wu
  fullname: Wu, Gaosong
  organization: Department of Thyroid and Breast Surgery Zhongnan Hospital of Wuhan University Wuhan 430071 China
– sequence: 7
  givenname: Shuang
  surname: Peng
  fullname: Peng, Shuang
  organization: College of Chemistry and Molecular Sciences Key Laboratory of Biomedical Polymers‐Ministry of Education Department of Hematology of Zhongnan Hospital Taikang Center for Life and Medical Sciences Wuhan University Wuhan 430072 China
– sequence: 8
  givenname: Xiang
  orcidid: 0000-0002-1829-9368
  surname: Zhou
  fullname: Zhou, Xiang
  organization: College of Chemistry and Molecular Sciences Key Laboratory of Biomedical Polymers‐Ministry of Education Department of Hematology of Zhongnan Hospital Taikang Center for Life and Medical Sciences Wuhan University Wuhan 430072 China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37616525$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LHTEUxUNR6tN261IC3biZ15vvyfLxaG3BKojtNmSSjEbmJdNkZuF_77yqXQiuLhd-53DvOcfoIOUUEDolsCYA9Kv1O7umQBkIosgHtCKCkoaDFgdoBZqJRkveHqHjWh8AQEuQH9ERU5JIQcUK_bmyKY-55LnibXmskx2GmAL-ZadQoh0q7nPB033AN8HluxSnmBO2yePNOA7R2f1ece7x1eyGEB3euOjrJ3TYL-Lw-WWeoN_fv91ufzSX1xc_t5vLxjHKpsZzJZiH1nIqfK-6jrsALACRzOvOUa0CgCJtr5l2UvQSOkoY6WTvmbXashN0_uw7lvx3DnUyu1hdGAabwvKSoa1QLVecwYJ-eYM-5Lmk5Tqz3KIklZrzhTp7oeZuF7wZS9zZ8mheE1sA_gy4kmstoTcuTv9SmIqNgyFg9sWYfTHmfzGLbP1G9ur8juAJltaOnA
CitedBy_id crossref_primary_10_1002_aenm_202502432
crossref_primary_10_1016_j_ccr_2024_215965
crossref_primary_10_1016_j_snb_2024_137019
crossref_primary_10_1021_acssensors_4c03180
crossref_primary_10_1002_smll_202504246
crossref_primary_10_1002_smll_202404549
crossref_primary_10_1016_j_actamat_2024_120048
crossref_primary_10_1016_j_bios_2023_115824
crossref_primary_10_3390_bios15070469
crossref_primary_10_1002_adfm_202408846
crossref_primary_10_1016_j_ijbiomac_2025_141331
Cites_doi 10.1002/smll.202201779
10.1021/acs.langmuir.1c02253
10.1038/s41586-022-04763-5
10.1016/j.cell.2022.05.003
10.1039/C9SC03202A
10.1039/D1CS00920F
10.1021/acs.analchem.1c05571
10.1038/nchem.2689
10.1021/acssensors.9b01759
10.1021/acsami.1c14998
10.1016/j.ccr.2021.214298
10.1002/anie.202011174
10.1016/j.talanta.2021.122896
10.1021/acs.analchem.2c04218
10.1002/adfm.201902237
10.1016/j.aca.2022.339806
10.1038/s41586-022-05029-w
10.1002/anie.201902714
10.1021/acs.nanolett.1c04633
10.1002/advs.202205097
10.1186/s12951-022-01603-6
10.1021/acs.analchem.2c04482
10.1016/j.apsusc.2021.150202
10.1021/acs.chemrev.0c01332
10.1080/07391102.2020.1719198
10.1002/adfm.201909062
10.1021/jacs.8b08770
10.1038/s41565-022-01168-3
10.1039/D2SC00188H
10.1021/acsami.2c11458
10.1021/acsami.1c00134
10.1039/C8NR09071H
10.1021/acs.analchem.1c02602
10.1016/j.cej.2022.134992
10.1021/acs.analchem.1c02125
10.1021/acs.analchem.1c05222
10.1016/j.biomaterials.2020.120160
10.1126/science.1230444
10.1016/j.bios.2022.114320
10.1039/D0CS00017E
10.1002/anie.202012681
10.1021/ar300265y
10.1002/adfm.201805341
10.1021/acs.accounts.9b00575
10.1038/nrg3296
10.1016/j.aca.2022.340136
10.1039/C9NR08127E
10.1021/acs.analchem.0c05060
10.1021/acsami.8b07137
10.1021/acs.analchem.1c04105
10.1002/smll.202103424
10.1016/j.snb.2022.131895
10.1021/acs.langmuir.2c00932
10.1021/acs.analchem.2c02916
10.1002/adfm.202110694
10.1016/j.snb.2022.131807
10.1021/acs.analchem.8b05599
10.1021/acs.analchem.2c05671
10.1021/acsami.1c18053
10.1021/acsnano.0c09996
10.1021/acs.chemrev.1c00241
10.1039/D2NR04095F
10.1002/adfm.202104519
10.1038/s41565-021-00898-0
10.1021/jacs.9b10936
10.1006/jmbi.2000.4040
10.1016/j.snb.2017.06.085
10.1038/s41591-022-01746-x
10.1126/science.aam9321
10.1002/adfm.201705137
10.1007/s11426-021-9998-x
10.1038/s41563-022-01368-1
10.1021/acs.analchem.1c02105
10.1021/acs.analchem.9b04691
10.1039/C7CS00543A
10.1126/science.1246738
10.1039/D2SC03013F
10.1002/adfm.202300309
10.1126/science.1120411
10.1039/C8QI01031E
10.1002/adfm.201702102
10.1021/jacs.3c02128
10.1016/j.bioactmat.2021.11.033
10.1021/acs.analchem.1c02878
10.1021/acsnano.1c04681
10.1021/jacs.7b04096
10.1093/nar/gkl655
10.1126/science.abi9335
10.1039/D1SC04229G
10.1038/s41551‐023‐01033‐1
10.1038/s41467-018-03650-w
10.1021/acsami.1c12622
10.1021/acsami.9b18805
10.1016/j.snb.2020.128456
10.1021/acsami.0c15089
10.1016/j.bios.2022.114668
10.1039/C8TB03206H
10.1039/C9CS00299E
10.1126/science.abm6304
10.1021/jacs.1c03129
10.1002/adma.202206842
10.1016/j.snb.2022.131676
10.1021/acs.analchem.0c04302
10.1021/acsmaterialslett.1c00797
10.1038/s41586-021-03642-9
10.31635/ccschem.019.20180011
10.1002/anie.202211358
10.1038/s41576-021-00439-4
10.1021/acs.nanolett.2c04022
10.1038/s41586-022-04443-4
10.1038/s41587-022-01486-w
10.1002/adma.202210895
10.1016/j.bios.2019.02.040
10.1038/378667a0
10.1038/s41467-019-09486-2
10.1021/jacs.0c10442
10.1039/D1CS00600B
10.1021/acs.nanolett.0c04759
10.1021/jacsau.1c00516
10.1021/acs.chemrev.9b00550
10.1038/s41586-020-2477-4
10.1038/s41565-022-01179-0
10.1016/j.cell.2020.09.001
10.1021/acs.chemrev.6b00160
10.1093/nsr/nwx030
10.1021/ja1042935
10.1128/mbio.02220‐22
10.1002/adma.202101857
10.1021/acs.analchem.8b02127
10.1021/acs.analchem.2c05329
10.1038/nature13905
10.1039/C8NR00193F
10.1021/acsnano.2c04886
10.1021/acs.analchem.2c03658
10.1021/acsomega.1c04319
10.31635/ccschem.020.201900078
10.1021/jacs.2c03326
10.1021/acs.analchem.1c03545
10.1021/acsami.1c15838
10.1016/j.trac.2021.116182
10.1038/s41596-019-0210-2
10.1007/s00604-018-3011-3
10.1002/anie.202008259
10.1126/sciadv.aaz6108
10.1021/acsabm.9b01189
10.1016/j.ccr.2018.09.009
10.1021/acsnano.2c11241
10.1126/science.abj0890
10.1002/adfm.202212277
10.1126/science.1178178
10.1038/nature10125
10.1038/s41586-022-04836-5
10.1038/s41563-023-01523-2
10.1016/j.chempr.2019.08.015
10.1021/jacs.2c07000
10.1016/j.nantod.2022.101623
10.1021/acs.analchem.9b01343
10.1021/acs.analchem.9b02569
10.1038/s41586-020-2738-2
10.1016/j.ccr.2016.05.007
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH.
2025 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH.
– notice: 2025 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202305171
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
ExternalDocumentID 37616525
10_1002_adma_202305171
Genre Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 91753201
– fundername: National Key Research and Development Program of China
  grantid: 2022YFA 1303500
– fundername: National Natural Science Foundation of China
  grantid: 21721005
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O8X
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WTY
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZY4
ZZTAW
~02
~IA
~WT
ALUQN
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c323t-d4753d08a425df7bb4ce03e0163d9bc297e00718f939c65f60b2131b6fd3aa9a3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001110931800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Sun Nov 09 10:08:24 EST 2025
Fri Aug 08 08:40:54 EDT 2025
Sat Aug 09 01:32:17 EDT 2025
Sat Nov 29 07:23:48 EST 2025
Tue Nov 18 22:14:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords therapeutic tools
nucleic acids
gene delivery agents
diagnostic tools
nanoporous crystalline materials
Language English
License 2023 Wiley‐VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c323t-d4753d08a425df7bb4ce03e0163d9bc297e00718f939c65f60b2131b6fd3aa9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1829-9368
PMID 37616525
PQID 3237626944
PQPubID 2045203
ParticipantIDs proquest_miscellaneous_2857847430
proquest_journals_3237626944
pubmed_primary_37616525
crossref_citationtrail_10_1002_adma_202305171
crossref_primary_10_1002_adma_202305171
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
Wang Z. (e_1_2_9_87_1) 2022; 61
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
Zhang Y. (e_1_2_9_119_1) 2023; 13
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_160_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
He Y. (e_1_2_9_164_1) 2021; 2
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
e_1_2_9_26_1
e_1_2_9_49_1
Hao Q. (e_1_2_9_51_1) 2023; 66
e_1_2_9_130_1
e_1_2_9_153_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_161_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_29_1
e_1_2_9_150_1
References_xml – ident: e_1_2_9_106_1
  doi: 10.1002/smll.202201779
– ident: e_1_2_9_115_1
  doi: 10.1021/acs.langmuir.1c02253
– ident: e_1_2_9_36_1
  doi: 10.1038/s41586-022-04763-5
– ident: e_1_2_9_10_1
  doi: 10.1016/j.cell.2022.05.003
– ident: e_1_2_9_127_1
  doi: 10.1039/C9SC03202A
– ident: e_1_2_9_17_1
  doi: 10.1039/D1CS00920F
– ident: e_1_2_9_104_1
  doi: 10.1021/acs.analchem.1c05571
– ident: e_1_2_9_66_1
  doi: 10.1038/nchem.2689
– ident: e_1_2_9_92_1
  doi: 10.1021/acssensors.9b01759
– ident: e_1_2_9_157_1
  doi: 10.1021/acsami.1c14998
– ident: e_1_2_9_46_1
  doi: 10.1016/j.ccr.2021.214298
– volume: 2
  year: 2021
  ident: e_1_2_9_164_1
  publication-title: Cell Rep.
– ident: e_1_2_9_9_1
  doi: 10.1002/anie.202011174
– volume: 13
  year: 2023
  ident: e_1_2_9_119_1
  publication-title: Catalysts
– ident: e_1_2_9_154_1
  doi: 10.1016/j.talanta.2021.122896
– ident: e_1_2_9_42_1
  doi: 10.1021/acs.analchem.2c04218
– ident: e_1_2_9_84_1
  doi: 10.1002/adfm.201902237
– ident: e_1_2_9_61_1
  doi: 10.1016/j.aca.2022.339806
– ident: e_1_2_9_35_1
  doi: 10.1038/s41586-022-05029-w
– ident: e_1_2_9_69_1
  doi: 10.1002/anie.201902714
– ident: e_1_2_9_145_1
  doi: 10.1021/acs.nanolett.1c04633
– ident: e_1_2_9_80_1
  doi: 10.1002/advs.202205097
– ident: e_1_2_9_81_1
  doi: 10.1186/s12951-022-01603-6
– ident: e_1_2_9_151_1
  doi: 10.1021/acs.analchem.2c04482
– ident: e_1_2_9_107_1
  doi: 10.1016/j.apsusc.2021.150202
– ident: e_1_2_9_11_1
  doi: 10.1021/acs.chemrev.0c01332
– ident: e_1_2_9_15_1
  doi: 10.1080/07391102.2020.1719198
– ident: e_1_2_9_54_1
  doi: 10.1002/adfm.201909062
– ident: e_1_2_9_52_1
  doi: 10.1021/jacs.8b08770
– ident: e_1_2_9_37_1
  doi: 10.1038/s41565-022-01168-3
– ident: e_1_2_9_122_1
  doi: 10.1039/D2SC00188H
– ident: e_1_2_9_161_1
  doi: 10.1021/acsami.2c11458
– ident: e_1_2_9_41_1
  doi: 10.1021/acsami.1c00134
– ident: e_1_2_9_118_1
  doi: 10.1039/C8NR09071H
– ident: e_1_2_9_158_1
  doi: 10.1021/acs.analchem.1c02602
– ident: e_1_2_9_78_1
  doi: 10.1016/j.cej.2022.134992
– ident: e_1_2_9_114_1
  doi: 10.1021/acs.analchem.1c02125
– ident: e_1_2_9_152_1
  doi: 10.1021/acs.analchem.1c05222
– ident: e_1_2_9_72_1
  doi: 10.1016/j.biomaterials.2020.120160
– ident: e_1_2_9_30_1
  doi: 10.1126/science.1230444
– ident: e_1_2_9_43_1
  doi: 10.1016/j.bios.2022.114320
– ident: e_1_2_9_49_1
  doi: 10.1039/D0CS00017E
– ident: e_1_2_9_53_1
  doi: 10.1002/anie.202012681
– ident: e_1_2_9_59_1
  doi: 10.1021/ar300265y
– ident: e_1_2_9_86_1
  doi: 10.1002/adfm.201805341
– ident: e_1_2_9_32_1
  doi: 10.1021/acs.accounts.9b00575
– ident: e_1_2_9_63_1
  doi: 10.1038/nrg3296
– ident: e_1_2_9_97_1
  doi: 10.1016/j.aca.2022.340136
– ident: e_1_2_9_73_1
  doi: 10.1039/C9NR08127E
– ident: e_1_2_9_95_1
  doi: 10.1021/acs.analchem.0c05060
– ident: e_1_2_9_99_1
  doi: 10.1021/acsami.8b07137
– ident: e_1_2_9_100_1
  doi: 10.1021/acs.analchem.1c04105
– ident: e_1_2_9_111_1
  doi: 10.1002/smll.202103424
– ident: e_1_2_9_133_1
  doi: 10.1016/j.snb.2022.131895
– ident: e_1_2_9_108_1
  doi: 10.1021/acs.langmuir.2c00932
– ident: e_1_2_9_142_1
  doi: 10.1021/acs.analchem.2c02916
– ident: e_1_2_9_139_1
  doi: 10.1002/adfm.202110694
– ident: e_1_2_9_153_1
  doi: 10.1016/j.snb.2022.131807
– ident: e_1_2_9_113_1
  doi: 10.1021/acs.analchem.8b05599
– ident: e_1_2_9_68_1
  doi: 10.1021/acs.analchem.2c05671
– ident: e_1_2_9_75_1
  doi: 10.1021/acsami.1c18053
– ident: e_1_2_9_83_1
  doi: 10.1021/acsnano.0c09996
– ident: e_1_2_9_7_1
  doi: 10.1021/acs.chemrev.1c00241
– ident: e_1_2_9_148_1
  doi: 10.1039/D2NR04095F
– ident: e_1_2_9_140_1
  doi: 10.1002/adfm.202104519
– ident: e_1_2_9_23_1
  doi: 10.1038/s41565-021-00898-0
– ident: e_1_2_9_57_1
  doi: 10.1021/jacs.9b10936
– ident: e_1_2_9_58_1
  doi: 10.1006/jmbi.2000.4040
– ident: e_1_2_9_93_1
  doi: 10.1016/j.snb.2017.06.085
– ident: e_1_2_9_128_1
  doi: 10.1038/s41591-022-01746-x
– ident: e_1_2_9_1_1
  doi: 10.1126/science.aam9321
– ident: e_1_2_9_85_1
  doi: 10.1002/adfm.201705137
– ident: e_1_2_9_146_1
  doi: 10.1007/s11426-021-9998-x
– ident: e_1_2_9_45_1
  doi: 10.1038/s41563-022-01368-1
– ident: e_1_2_9_147_1
  doi: 10.1021/acs.analchem.1c02105
– ident: e_1_2_9_163_1
  doi: 10.1021/acs.analchem.9b04691
– ident: e_1_2_9_31_1
  doi: 10.1039/C7CS00543A
– ident: e_1_2_9_55_1
  doi: 10.1126/science.1246738
– ident: e_1_2_9_18_1
  doi: 10.1039/D2SC03013F
– ident: e_1_2_9_38_1
  doi: 10.1002/adfm.202300309
– ident: e_1_2_9_135_1
  doi: 10.1126/science.1120411
– ident: e_1_2_9_94_1
  doi: 10.1039/C8QI01031E
– ident: e_1_2_9_67_1
  doi: 10.1002/adfm.201702102
– ident: e_1_2_9_132_1
  doi: 10.1021/jacs.3c02128
– ident: e_1_2_9_150_1
  doi: 10.1016/j.bioactmat.2021.11.033
– ident: e_1_2_9_102_1
  doi: 10.1021/acs.analchem.1c02878
– ident: e_1_2_9_82_1
  doi: 10.1021/acsnano.1c04681
– ident: e_1_2_9_144_1
  doi: 10.1021/jacs.7b04096
– ident: e_1_2_9_62_1
  doi: 10.1093/nar/gkl655
– ident: e_1_2_9_20_1
  doi: 10.1126/science.abi9335
– ident: e_1_2_9_88_1
  doi: 10.1039/D1SC04229G
– ident: e_1_2_9_5_1
  doi: 10.1038/s41551‐023‐01033‐1
– ident: e_1_2_9_60_1
  doi: 10.1038/s41467-018-03650-w
– ident: e_1_2_9_131_1
  doi: 10.1021/acsami.1c12622
– ident: e_1_2_9_109_1
  doi: 10.1021/acsami.9b18805
– ident: e_1_2_9_110_1
  doi: 10.1016/j.snb.2020.128456
– ident: e_1_2_9_74_1
  doi: 10.1021/acsami.0c15089
– ident: e_1_2_9_149_1
  doi: 10.1016/j.bios.2022.114668
– ident: e_1_2_9_159_1
  doi: 10.1039/C8TB03206H
– ident: e_1_2_9_48_1
  doi: 10.1039/C9CS00299E
– ident: e_1_2_9_27_1
  doi: 10.1126/science.abm6304
– ident: e_1_2_9_6_1
  doi: 10.1021/jacs.1c03129
– ident: e_1_2_9_33_1
  doi: 10.1002/adma.202206842
– ident: e_1_2_9_91_1
  doi: 10.1016/j.snb.2022.131676
– ident: e_1_2_9_96_1
  doi: 10.1021/acs.analchem.0c04302
– ident: e_1_2_9_125_1
  doi: 10.1021/acsmaterialslett.1c00797
– ident: e_1_2_9_130_1
  doi: 10.1038/s41586-021-03642-9
– ident: e_1_2_9_162_1
  doi: 10.31635/ccschem.019.20180011
– ident: e_1_2_9_19_1
  doi: 10.1002/anie.202211358
– ident: e_1_2_9_22_1
  doi: 10.1038/s41576-021-00439-4
– ident: e_1_2_9_105_1
  doi: 10.1021/acs.nanolett.2c04022
– ident: e_1_2_9_136_1
  doi: 10.1038/s41586-022-04443-4
– ident: e_1_2_9_13_1
  doi: 10.1038/s41587-022-01486-w
– ident: e_1_2_9_79_1
  doi: 10.1002/adma.202210895
– ident: e_1_2_9_141_1
  doi: 10.1016/j.bios.2019.02.040
– ident: e_1_2_9_34_1
  doi: 10.1038/378667a0
– ident: e_1_2_9_120_1
  doi: 10.1038/s41467-019-09486-2
– ident: e_1_2_9_56_1
  doi: 10.1021/jacs.0c10442
– ident: e_1_2_9_47_1
  doi: 10.1039/D1CS00600B
– volume: 66
  start-page: 620
  year: 2023
  ident: e_1_2_9_51_1
  publication-title: Sci. China Chem.
– ident: e_1_2_9_116_1
  doi: 10.1021/acs.nanolett.0c04759
– ident: e_1_2_9_123_1
  doi: 10.1021/jacsau.1c00516
– ident: e_1_2_9_137_1
  doi: 10.1021/acs.chemrev.9b00550
– ident: e_1_2_9_12_1
  doi: 10.1038/s41586-020-2477-4
– ident: e_1_2_9_4_1
  doi: 10.1038/s41565-022-01179-0
– ident: e_1_2_9_129_1
  doi: 10.1016/j.cell.2020.09.001
– ident: e_1_2_9_65_1
  doi: 10.1021/acs.chemrev.6b00160
– ident: e_1_2_9_160_1
  doi: 10.1093/nsr/nwx030
– ident: e_1_2_9_29_1
  doi: 10.1021/ja1042935
– ident: e_1_2_9_16_1
  doi: 10.1128/mbio.02220‐22
– ident: e_1_2_9_50_1
  doi: 10.1002/adma.202101857
– volume: 61
  year: 2022
  ident: e_1_2_9_87_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_9_101_1
  doi: 10.1021/acs.analchem.8b02127
– ident: e_1_2_9_143_1
  doi: 10.1021/acs.analchem.2c05329
– ident: e_1_2_9_8_1
  doi: 10.1038/nature13905
– ident: e_1_2_9_89_1
  doi: 10.1039/C8NR00193F
– ident: e_1_2_9_77_1
  doi: 10.1021/acsnano.2c04886
– ident: e_1_2_9_155_1
  doi: 10.1021/acs.analchem.2c03658
– ident: e_1_2_9_64_1
  doi: 10.1021/acsomega.1c04319
– ident: e_1_2_9_44_1
  doi: 10.31635/ccschem.020.201900078
– ident: e_1_2_9_121_1
  doi: 10.1021/jacs.2c03326
– ident: e_1_2_9_156_1
  doi: 10.1021/acs.analchem.1c03545
– ident: e_1_2_9_134_1
  doi: 10.1021/acsami.1c15838
– ident: e_1_2_9_138_1
  doi: 10.1016/j.trac.2021.116182
– ident: e_1_2_9_2_1
  doi: 10.1038/s41596-019-0210-2
– ident: e_1_2_9_90_1
  doi: 10.1007/s00604-018-3011-3
– ident: e_1_2_9_124_1
  doi: 10.1002/anie.202008259
– ident: e_1_2_9_70_1
  doi: 10.1126/sciadv.aaz6108
– ident: e_1_2_9_98_1
  doi: 10.1021/acsabm.9b01189
– ident: e_1_2_9_39_1
  doi: 10.1016/j.ccr.2018.09.009
– ident: e_1_2_9_117_1
  doi: 10.1021/acsnano.2c11241
– ident: e_1_2_9_25_1
  doi: 10.1126/science.abj0890
– ident: e_1_2_9_40_1
  doi: 10.1002/adfm.202212277
– ident: e_1_2_9_21_1
  doi: 10.1126/science.1178178
– ident: e_1_2_9_24_1
  doi: 10.1038/nature10125
– ident: e_1_2_9_14_1
  doi: 10.1038/s41586-022-04836-5
– ident: e_1_2_9_28_1
  doi: 10.1038/s41563-023-01523-2
– ident: e_1_2_9_71_1
  doi: 10.1016/j.chempr.2019.08.015
– ident: e_1_2_9_3_1
  doi: 10.1021/jacs.2c07000
– ident: e_1_2_9_76_1
  doi: 10.1016/j.nantod.2022.101623
– ident: e_1_2_9_103_1
  doi: 10.1021/acs.analchem.9b01343
– ident: e_1_2_9_112_1
  doi: 10.1021/acs.analchem.9b02569
– ident: e_1_2_9_26_1
  doi: 10.1038/s41586-020-2738-2
– ident: e_1_2_9_126_1
  doi: 10.1016/j.ccr.2016.05.007
SSID ssj0009606
Score 2.5458908
SecondaryResourceType review_article
Snippet Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage e2305171
SubjectTerms Acids
Biocompatibility
Biological activity
Biosensing Techniques - methods
Data storage
Deoxyribonucleic acid
DNA
DNA - analysis
DNA - chemistry
Humans
Metal-organic frameworks
Metal-Organic Frameworks - chemistry
Nanopores
Nucleic acids
Nucleic Acids - analysis
Nucleic Acids - chemistry
Pore size
Recognition
Title Nanoporous Crystalline Materials for the Recognition and Applications of Nucleic Acids
URI https://www.ncbi.nlm.nih.gov/pubmed/37616525
https://www.proquest.com/docview/3237626944
https://www.proquest.com/docview/2857847430
Volume 37
WOSCitedRecordID wos001110931800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6jgMcEN8UxmQkBAcUltj58rEamziUgqYOulNkO44WqSRd107jH-Hv5Tl2nFRoaBy4RJXr2pXfL8_vPT__HkJvOEmLUIjIy2Xhe6EomCeKsPA0VVsCIFDS8MxOkuk0nc_Z18HgV3sX5mqRVFV6fc2W_1XU0AbC1ldn_0HcblBogM8gdHiC2OF5K8GDvqzBqNaprYern2D8LRpL8jNfm9ldYuFJmztkE5LHvbNsE0iAkUv5fixLcxvYsdW2eQM_3Jhgp35XZXWudHFmF1s42zRuf213xyZub3TL2eac192BVGXaLsqu56ztWeuLxrbdhidI5JLjbqsE-yFJGnksNsybH5RVyET7uKYQZ6uxDU2MRabZRP7YCQyzLM8bcinws6LAlHrZptyefsmOTyeTbHY0n71dXni6Gpk-tbelWXbQLkkilg7R7scT6NjROcdN1Vb3j1s6UJ8cbE-5be7c4MM0tszsAbpvnRA8NuB5iAaqeoTu9agpH6NvHYxwD0bYwQgDjDDACPdghAFGuA8jXBfYwgg3MHqCTo-PZoefPFuDw5OU0LWXh-DP5n7KQbfnRSJEqAvMKXAUaM6EJCxR2kpNC0aZjKMi9gUJaCDiIqecM06fomFVV-o5wgHlvmIJCFSJEDZo4UupopiFiseJn6sR8tqlyqQlqNd1UhaZodYmmV7azC3tCL1z_ZeGmuXGnnvtymf2Tb3MqM4H0_e4wxF67b4G5apPzHilYH0zksKGFoKR7Y_QMyMxNxX8OogjEr34--Av0d3utdhDw_Vqo16hO_JqXV6u9tFOMk_3Lbp-AzWopSU
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoporous+Crystalline+Materials+for+the+Recognition+and+Applications+of+Nucleic+Acids&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yu%2C+Long&rft.au=Wang%2C+Yuhao&rft.au=Sun%2C+Yuqing&rft.au=Tang%2C+Yongling&rft.date=2025-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=37&rft.issue=31&rft_id=info:doi/10.1002%2Fadma.202305171&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon