Direct Neural-Network Hardware-Implementation Algorithm

An algorithm for compact neural-network hardware implementation is presented, which exploits the special properties of the Boolean functions describing the operation of artificial neurons with step activation function. The algorithm contains three steps: artificial-neural-network (ANN) mathematical...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial electronics (1982) Ročník 57; číslo 5; s. 1845 - 1848
Hlavní autoři: Dinu, Andrei, Cirstea, Marcian N, Cirstea, Silvia E
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0278-0046, 1557-9948
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An algorithm for compact neural-network hardware implementation is presented, which exploits the special properties of the Boolean functions describing the operation of artificial neurons with step activation function. The algorithm contains three steps: artificial-neural-network (ANN) mathematical model digitization, conversion of the digitized model into a logic-gate structure, and hardware optimization by elimination of redundant logic gates. A set of C++ programs automates algorithm implementation, generating an optimized very high speed integrated circuit hardware description language code. This strategy bridges the gap between ANN design software and hardware design packages (Xilinx). Although the method is directly applicable only to neurons with step activation functions, it can be extended to sigmoidal functions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2009.2033097