The max-BARMA models for counts with bounded support
In this note, we introduce a discrete counterpart of the conventional max-autoregressive moving-average process of Davis and Resnick (1989), based on the binomial thinning operator and driven by a sequence of i. i. d. nonnegative integer-valued random variables with a finite range of counts. Basic p...
Uloženo v:
| Vydáno v: | Statistics & probability letters Ročník 143; s. 28 - 36 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.12.2018
|
| Témata: | |
| ISSN: | 0167-7152, 1879-2103 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this note, we introduce a discrete counterpart of the conventional max-autoregressive moving-average process of Davis and Resnick (1989), based on the binomial thinning operator and driven by a sequence of i. i. d. nonnegative integer-valued random variables with a finite range of counts. Basic probabilistic and statistical properties of this new class of models are discussed in detail, namely the existence of a stationary distribution, and how observations’ and innovations’ distributions are related to each other. Furthermore, parameter estimation is also addressed. |
|---|---|
| ISSN: | 0167-7152 1879-2103 |
| DOI: | 10.1016/j.spl.2018.07.011 |