The max-BARMA models for counts with bounded support

In this note, we introduce a discrete counterpart of the conventional max-autoregressive moving-average process of Davis and Resnick (1989), based on the binomial thinning operator and driven by a sequence of i. i. d. nonnegative integer-valued random variables with a finite range of counts. Basic p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Statistics & probability letters Ročník 143; s. 28 - 36
Hlavní autoři: Weiß, Christian H., Scotto, Manuel G., Möller, Tobias A., Gouveia, Sónia
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2018
Témata:
ISSN:0167-7152, 1879-2103
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this note, we introduce a discrete counterpart of the conventional max-autoregressive moving-average process of Davis and Resnick (1989), based on the binomial thinning operator and driven by a sequence of i. i. d. nonnegative integer-valued random variables with a finite range of counts. Basic probabilistic and statistical properties of this new class of models are discussed in detail, namely the existence of a stationary distribution, and how observations’ and innovations’ distributions are related to each other. Furthermore, parameter estimation is also addressed.
ISSN:0167-7152
1879-2103
DOI:10.1016/j.spl.2018.07.011