The max-BARMA models for counts with bounded support
In this note, we introduce a discrete counterpart of the conventional max-autoregressive moving-average process of Davis and Resnick (1989), based on the binomial thinning operator and driven by a sequence of i. i. d. nonnegative integer-valued random variables with a finite range of counts. Basic p...
Gespeichert in:
| Veröffentlicht in: | Statistics & probability letters Jg. 143; S. 28 - 36 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2018
|
| Schlagworte: | |
| ISSN: | 0167-7152, 1879-2103 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this note, we introduce a discrete counterpart of the conventional max-autoregressive moving-average process of Davis and Resnick (1989), based on the binomial thinning operator and driven by a sequence of i. i. d. nonnegative integer-valued random variables with a finite range of counts. Basic probabilistic and statistical properties of this new class of models are discussed in detail, namely the existence of a stationary distribution, and how observations’ and innovations’ distributions are related to each other. Furthermore, parameter estimation is also addressed. |
|---|---|
| ISSN: | 0167-7152 1879-2103 |
| DOI: | 10.1016/j.spl.2018.07.011 |